Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2016 |
It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8\textendash9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by th ... Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, Bernard; Reeves, Geoffery; Kletzing, Craig; YEAR: 2016   DOI: 10.1002/2016GL068260 Radiation belts; relativistic electron microbursts; relativistic electrons; SAMPEX; Van Allen Probes; whistler mode chorus |
2015 |
It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with ... Kurita, Satoshi; Kadokura, Akira; Miyoshi, Yoshizumi; Morioka, Akira; Sato, Yuka; Misawa, Hiroaki; YEAR: 2015   DOI: 10.1002/2015GL064564 diffuse aurora; Radiation belts; SAMPEX; Syowa Station; whistler mode wave |
1