Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2020 |
In this study, we performed a series of long-term and individual storm simulations with and without hiss, chorus, and electromagnetic ion cyclotron (EMIC) waves. We compared simulation results incorporating different wave modes with Van Allen Probes flux observations to illustrate how hiss and chorus waves aid EMIC waves in depleting multi-MeV electrons. We found that EMIC, hiss, and chorus waves are required to reproduce satellite measurements in our simulations. Our results indicate that hiss waves play a dominant role in ... . Y. Drozdov, A; Usanova, M.; Hudson, M.; Allison, H.; . Y. Shprits, Y; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028282 EMIC waves; Radiation belts; Whistler waves; VERB code; Fokker-Planck diffusion equation; Van Allen Probes |
2017 |
EMIC wave parameterization in the long-term VERB code simulation Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE ... . Y. Drozdov, A; . Y. Shprits, Y; Usanova, M.; Aseev, N.; Kellerman, A.; Zhu, H.; YEAR: 2017   DOI: 10.1002/2017JA024389 |
Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial d ... . Y. Drozdov, A; . Y. Shprits, Y; Aseev, N.; Kellerman, A.; Reeves, G.; YEAR: 2017   DOI: 10.1002/swe.v15.110.1002/2016SW001426 radial diffusion; Radiation belts; Van Allen Probes; VERB code |
2015 |
In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to O ... . Y. Drozdov, A; . Y. Shprits, Y; Orlova, K.G.; Kellerman, A.; Subbotin, D.; Baker, D.; Spence, H.E.; YEAR: 2015   DOI: 10.1002/2014JA020637 EMIC waves; Long-term simulation; Van Allen Probes; VERB code |
1