Bibliography



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2018

The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations ...

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves

2017

CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models

Numerical simulation studies of the Earth\textquoterights radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of ...

Aryan, Homayon; Sibeck, David; Bin Kang, Suk-; Balikhin, Michael; Fok, Mei-Ching; Agapitov, Oleksiy; Komar, Colin; Kanekal, Shrikanth; Nagai, Tsugunobu;

YEAR: 2017     DOI: 10.1002/2017JA024159

Chorus and plasmaspheric hiss wave models; CIMI numerical simulations; Geomagnetic storm events; Radiation belt electron flux enhancements; Van Allen Probes; VLF waves; Wave-particle interaction

VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons

Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, an ...

Ma, Qianli; Mourenas, Didier; Li, Wen; Artemyev, Anton; Thorne, Richard;

YEAR: 2017     DOI: 10.1002/2017GL073885

Electron scattering; Statistical wave model; Van Allen Probes; Van Allen Probes observation; VLF waves

Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VL ...

Agapitov, O.; Blum, L.; Mozer, F.; Bonnell, J.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2017GL072701

chorus spatial scales; Van Allen Probes; VLF waves

2015

Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations

We report on simultaneous spacecraft and ground-based observations of quasiperiodic VLF emissions and related energetic-electron dynamics. Quasiperiodic emissions in the frequency range 2\textendash6 kHz were observed during a substorm on 25 January 2013 by Van Allen Probe-A and a ground-based station in the Northern Finland. The spacecraft detected the VLF signals near the geomagnetic equator in the night sector at L = 3.0\textendash4.2 when it was inside the plasmasphere. During the satellite motion toward higher latitudes ...

Titova, E.; Kozelov, B.; Demekhov, A.; Manninen, J.; Santolik, O.; Kletzing, C.; Reeves, G.;

YEAR: 2015     DOI: 10.1002/grl.v42.1510.1002/2015GL064911

energetic electrons; quasiperiodic emissions; Van Allen Probes; VLF waves

Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems

Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10\textquoterights keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10\textquoterights keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional p ...

Jaynes, A.; Lessard, M.; Takahashi, K.; Ali, A.; Malaspina, D.; Michell, R.; Spanswick, E.; Baker, D.; Blake, J.; Cully, C.; Donovan, E.; Kletzing, C.; Reeves, G.; Samara, M.; Spence, H.; Wygant, J.;

YEAR: 2015     DOI: 10.1002/2015JA021380

aurora; precipitation; pulsating aurora; substorms; ULF waves; Van Allen Probes; VLF waves

Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes

Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen ...

Jaynes, A.N.; Baker, D.N.; Singer, H.J.; Rodriguez, J.V.; Loto\textquoterightaniu, T.M.; Ali, A.; Elkington, S.R.; Li, X.; Kanekal, S.G.; Fennell, J.F.; Li, W.; Thorne, R.M.; Kletzing, C.A.; Spence, H.E.; Reeves, G.D.;

YEAR: 2015     DOI: 10.1002/2015JA021234

Radiation belts; relativistic electrons; substorms; ULF waves; Van Allen Probes; VLF waves

Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit

Poststorm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992\textendash2002), our previous work developed a predictive model of the poststorm flux at geosynchronous orbit based on explanator ...

Simms, Laura; Engebretson, Mark; Smith, A.; Clilverd, Mark; Pilipenko, Viacheslav; Reeves, Geoffrey;

YEAR: 2015     DOI: 10.1002/2014JA020337

relativistic electron flux; VLF waves



  1