Found 9 entries in the Bibliography.

Showing entries from 1 through 9


Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 t ...

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

YEAR: 2020     DOI:

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes


Global Survey and Empirical Model of Fast Magnetosonic Waves Over Their Full Frequency Range in Earth\textquoterights Inner Magnetosphere

We investigate the global distribution and provide empirical models of fast magnetosonic waves using the combined observations by the magnetometer and waveform receiver on board Van Allen Probes. The magnetometer measurements of magnetosonic waves indicate a significant wave power within the frequency range from the helium gyrofrequency to 20 Hz at L >= 4 in the afternoon sector, both inside and outside the plasmapause. The waveform receiver measurements indicate a significant wave power from 20 Hz to the lower hybrid resona ...

Ma, Q.; Li, W.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.;

YEAR: 2019     DOI: 10.1029/2019JA027407

Empirical Fitting; Global Survey; magnetosonic waves; Van Allen Probes; Van Allen Probes observation

Analyzing EMIC Waves in the Inner Magnetosphere Using Long-Term Van Allen Probes Observations

With 64-month magnetic data from Van Allen Probes, we have studied not only the global distribution, wave normal angle (θ), and ellipticity (ε) of electromagnetic ion cyclotron (EMIC) waves, but also the dependence of their occurrence rates and magnetic amplitudes on the AE* index (the mean value of AE index over previous 1 hr). Our results show that H+ band waves are preferentially detected at 5 <= L <= 6.5, in the noon sector. They typically have small θ (<30\textdegree) and weakly left-hand polarization but become more ...

Chen, Huayue; Gao, Xinliang; Lu, Quanming; Wang, Shui;

YEAR: 2019     DOI: 10.1029/2019JA026965

A long-term statistical work; EMIC wave; inner magnetosphere; spatial distribution; Van Allen Probes; Van Allen Probes observation; Wave fundamental characters

Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth\textquoterights Inner Magnetosphere

Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth\textquoterights magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen- and helium-band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi-linear theory to understand the effects of resonant scatter ...

Ma, Q.; Li, W.; Yue, C.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.;

YEAR: 2019     DOI: 10.1029/2019GL083513

electromagnetic ion cyclotron waves; Ion heating; Quasilinear modeling; Resonant interaction in plasmasphere; ring current; Van Allen Probes; Van Allen Probes observation


Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events

We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17\textendash18 March 2013 and non\textendashstorm time of 19\textendash20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramaticall ...

Ma, Q.; Li, W.; Bortnik, J.; Thorne, R.; Chu, X.; Ozeke, L.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.;

YEAR: 2018     DOI: 10.1002/2017JA025114

electron accelerationl whistler mode waves; radial diffusion; radiation belt simulation; Van Allen Probes; Van Allen Probes observation


Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping

Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15\textendash100 eV) electrons. A combined investigation of wave and electron distribution characteristics o ...

Ma, Q.; Artemyev, A.; Mourenas, D.; Li, W.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2017GL075892

Landau damping; maximum refractive index; oblique chorus waves; thermal electron effects; Van Allen Probes; Van Allen Probes observation

Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region

We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusi ...

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.;

YEAR: 2017     DOI: 10.1002/2017JA024452

Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere

VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons

Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, an ...

Ma, Qianli; Mourenas, Didier; Li, Wen; Artemyev, Anton; Thorne, Richard;

YEAR: 2017     DOI: 10.1002/2017GL073885

Electron scattering; Statistical wave model; Van Allen Probes; Van Allen Probes observation; VLF waves


Characteristic energy range of electron scattering due to plasmaspheric hiss

We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to th ...

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.;

YEAR: 2016     DOI: 10.1002/2016JA023311

electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation