Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2019 |
Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment ... Ferradas, C.; Jordanova, V.; Reeves, G.; Larsen, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019JA026649 electron lifetime; electron loss; numerical modeling; pitch angle scattering; Van Allen Probes; Weimer electric field model |
2017 |
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1-~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convec ... Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017JA024702 Geomagnetic storm; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model |
2016 |
We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details o ... Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Published by: Geophysical Research Letters Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016GL071359 drift path; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model |
1