Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2021 |
The First Observation of N+ Electromagnetic Ion Cyclotron Waves Abstract Observations from past space missions report on the significant abundance of N+, in addition to those of O+, outflowing from the terrestrial ionosphere and populating the near-Earth region. However, instruments on board current space missions lack the mass resolution to distinguish between the two, and often the role of N+ in regulating the magnetosphere dynamics, is lumped together with that of O+ ions. For instance, our understanding regarding the role of electromagnetic ion cyclotron (EMIC) waves in controlling t ... Published by: Journal of Geophysical Research: Space Physics Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028716 electromagnetic ion cyclotron waves; heavy ions; Van Allen Probes; N+ EMIC Wave; Wave-particle interaction; inner magnetosphere |
2019 |
Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth\textquoterights magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen- and helium-band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi-linear theory to understand the effects of resonant scatter ... Ma, Q.; Li, W.; Yue, C.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.; Published by: Geophysical Research Letters Published on: 06/2019 YEAR: 2019   DOI: 10.1029/2019GL083513 electromagnetic ion cyclotron waves; Ion heating; Quasilinear modeling; Resonant interaction in plasmasphere; ring current; Van Allen Probes; Van Allen Probes observation |
2016 |
Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect ... He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022483 combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes |
2014 |
Model of electromagnetic ion cyclotron waves in the inner magnetosphere The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. (2009), however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, nonbounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our stud ... Gamayunov, K.; Engebretson, M.; Zhang, M.; Rassoul, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2014 YEAR: 2014   DOI: 10.1002/jgra.v119.910.1002/2014JA020032 electromagnetic ion cyclotron waves; outer radiation belt; ring current |
1