Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2018 |
Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear w ... Agapitov, O.; Drake, J.; Vasko, I.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G.; Published by: Geophysical Research Letters Published on: 03/2018 YEAR: 2018   DOI: 10.1002/2017GL076957 Electron acceleration; electron acoustic waves; induced scattering; nonlinear wave-particle interactions; Van Allen Probes; wave steepening; Whistler waves |
2015 |
Huge numbers of different non-linear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on the Van Allen Probes. Some of them are associated with whistler waves. Such TDS often emerge on the forward edges of the whistler wave packets and form chains. The parametric decay of a whistler wave into a whistler wave propagating in the opposite direction and an electron acoustic wave is studied experimentally as well ... Agapitov, O.; Krasnoselskikh, V.; Mozer, F.; Artemyev, A.; Volokitin, A.; Published by: Geophysical Research Letters Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2015GL064145 electron acoustic waves; nonlinear structure formation; parametric decay of whistlers; Van Allen Probes |
1