Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2019 |
The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth\textquoterights magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high-energy electrons (<400 keV) and inner-zone protons (230-630 keV) in the radiation belts and ring current, the data have been rarely used for inner-magnetospheric science. The current paper presents two ... Smirnov, A.; Kronberg, E.; Latallerie, F.; Daly, P.; Aseev, N.; Shprits, Y; Kellerman, A.; Kasahara, S.; Turner, D.; Taylor, M.; Published by: Space Weather Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018SW001989 electrons; Radiation belts; Solar Cycle; Space weather; Van Allen Probes |
2018 |
Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit Variations in the high-energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower-energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low-altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured ... Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018JA025786 electrons; integral flux; Radiation belts; seed population; Van Allen Probes |
2017 |
The Van Allen Probes have reported frequent flux enhancements of 100s keV electrons in the slot region, with lower energy electrons exhibiting more dynamic behavior at lower L shells. Also, in situ electric field measurements from the Combined Release and Radiation Effects Satellite, Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Van Allen Probes have provided evidence for large-scale electric fields at low L shells during active times. We study an event on 19 February 2014 where hundre ... Califf, S.; Li, X.; Zhao, H.; Kellerman, A.; Sarris, T.; Jaynes, A.; Malaspina, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016JA023657 convection; electric field; electrons; Slot region; Van Allen Probes |
2016 |
We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including s ... Schiller, Q.; Kanekal, S.; Jian, L.; Li, X.; Jones, A.; Baker, D.; Jaynes, A.; Spence, H.; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071628 |
Control of the innermost electron radiation belt by large-scale electric fields Electron measurements from the Magnetic Electron Ion Spectrometer instruments on Van Allen Probes, for kinetic energies \~100 to 400 keV, show characteristic dynamical features of the innermost ( inline image) radiation belt: rapid injections, slow decay, and structured energy spectra. There are also periods of steady or slowly increasing intensity and of fast decay following injections. Local time asymmetry, with higher intensity near dawn, is interpreted as evidence for drift shell distortion by a convection electric field ... Selesnick, R.; Su, Y.-J.; Blake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA022973 electric field; electrons; Inner radiation belt; Van Allen Probes |
2015 |
Measurement of inner radiation belt electrons with kinetic energy above 1~MeV Data from the Proton-Electron Telescope on the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, taken during 1992\textendash2009, are analyzed for evidence of inner radiation belt electrons with kinetic energy E > 1 MeV. It is found that most of the data from a detector combination with a nominal energy threshold of 1 MeV were, in fact, caused by a chance coincidence response to lower energy electrons or high-energy protons. In particular, there was no detection of inner belt or slot region electron ... Published by: Journal of Geophysical Research: Space Physics Published on: 10/2015 YEAR: 2015   DOI: 10.1002/2015JA021387 |
The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and ... Skov, Tamitha; Fennell, Joseph; Roeder, James; Blake, Bernard; Claudepierre, Seth; Published by: IEEE Transactions on Plasma Science Published on: 09/2015 YEAR: 2015   DOI: 10.1109/TPS.2015.2468214 artificial satellites; dielectric materials; electrons; Energy measurement; MAGEis; Magnetosphere; particle detectors; protons; Van Allen Probes |
The effects of geomagnetic storms on electrons in Earth\textquoterights radiation belts We use Van Allen Probes data to investigate the responses of 10s of keV to 2 MeV electrons throughout a broad range of the radiation belts (2.5 <= L <= 6.0) during 52 geomagnetic storms from the most recent solar maximum. Electron storm-time responses are highly dependent on both electron energy and L-shell. 10s of keV electrons typically have peak fluxes in the inner belt or near-Earth plasma sheet and fill the inner magnetosphere during storm main phases. ~100 to ~600 keV electrons are enhanced in up to 87\% of cases aroun ... Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Kilpua, E.; Hietala, H.; Published by: Geophysical Research Letters Published on: 07/2015 YEAR: 2015   DOI: 10.1002/2015GL064747 electrons; Van Allen Probes; Geomagnetic storms; Radiation belts |
1