Found 4 entries in the Bibliography.

Showing entries from 1 through 4


Dynamical Coupling of Energetic Electrons and Upper-Hybrid Thermal Fluctuations in the Earth s Radiation Belt

Abstract The inner magnetosphere including the radiation belt environment is replete with quasi-electrostatic fluctuations with peak frequency in the upper-hybrid frequency range. Some examples are demonstrated with the Van Allen Probe spacecraft data. These features have recently been explained in the framework of spontaneously emitted thermal noise theory. Such an environment is also characterized by quasi-isotropic population of energized electrons, which naturally leads one to ask whether these electrons and the upper-hy ...

Yoon, Peter; Hwang, Junga;

YEAR: 2020     DOI: 10.1029/2019JA027748

upper-hybrid fluctuation; energetic electron; Radiation belt; Van Allen Probes; spontaneous emission; thermal noise


On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when c ...

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes

Storm-time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus

During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3-6 and MLT=2 - 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 Me ...

Yang, Chang; Xiao, Fuliang; He, Yihua; Liu, Si; Zhou, Qinghua; Guo, Mingyue; Zhao, Wanli;

YEAR: 2018     DOI: 10.1002/2017GL075894

energetic electron; Geomagnetic storm; outer radiation belt; Van Allen Probes; Wave-particle interaction; whistler-mode chorus wave


Wave-driven gradual loss of energetic electrons in the slot region

Resonant pitch angle scattering by plasmaspheric hiss has long been considered to be responsible for the energetic electron loss in the slot region, but the detailed quantitative comparison between theory and observations is still lacking. Here we focus on the loss of 100\textendash600 keV electrons at L = 3 during the recovery phase of a geomagnetic storm on 28 June 2013. Van Allen Probes data showed the concurrence of intense (with power up to 10-4 nT2/Hz) plasmaspheric hiss waves and significant (up to 1 order) loss of en ...

He, Zhaoguo; Yan, Qi; Chu, Yuchuan; Cao, Yong;

YEAR: 2016     DOI: 10.1002/2016JA023087

electron loss; energetic electron; Plasmaspheric Hiss; Slot region; Van Allen Probes; Wave-particle interaction