Bibliography



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2018

Spatial Development of the Dipolarization Region in the Inner Magnetosphere

The present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk-to-midnight sector than in the midnight-to-dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. > 0.8) within 1 hr in MLT and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk-to-m ...

Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Singer, H.;

YEAR: 2018     DOI: 10.1029/2018JA025443

Dipolarization; injection; inner magnetosphere; R1 and R2 currents; substorm current wedge; substorms; Van Allen Probes

2017

Diffusive scattering of electrons by electron holes around injection fronts

Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify th ...

. Y. Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Bonnell, J.;

YEAR: 2017     DOI: 10.1002/2016JA023337

electron holes; electron losses; injection; Radiation belt; solitary waves; Van Allen Probes

Van Allen Probes observation of a 360\textdegree phase shift in the flux modulation of injected electrons by ULF waves

We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultralow frequency (ULF) waves on 29 October 2013. Oscillations in electron flux were observed at the period of \~450 s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from ...

Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, J.; Kletzing, C.;

YEAR: 2017     DOI: 10.1002/2016GL071252

drift resonance; injection; PSD gradient; ULF waves; Van Allen Probes

2016

Electron holes in the outer radiation belt: Characteristics and their role in electron energization

Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energ ...

. Y. Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Drake, J.; Kuzichev, I.;

YEAR: 2016     DOI: 10.1002/2016JA023083

Electron acceleration; electron holes; injection; Radiation belt; solitary waves; Van Allen Probes

Van Allen Probes observation of a 360\textdegree phase shift in the flux modulation of injected electrons by ULF waves

We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultra-low frequency (ULF) waves on October 29, 2013. Oscillations in electron flux were observed at the period of \~450s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from ...

Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, John; Kletzing, Craig;

YEAR: 2016     DOI: 10.1002/2016GL071252

drift-resonance; injection; PSD gradient; ULF waves; Van Allen Probes

Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams

The subauroral polarization stream (SAPS) is an important magnetosphere-ionosphere (MI) coupling phenomenon that impacts a range of particle populations in the inner magnetosphere. SAPS studies often emphasize ionospheric signatures of fast westward flows, but the equatorial magnetosphere is also affected through strong radial electric fields in the dusk sector. This study focuses on a period of steady southward interplanetary magnetic field (IMF) during the 29 June 2013 geomagnetic storm where the Van Allen Probes observe a ...

Califf, S.; Li, X.; Wolf, R.; Zhao, H.; Jaynes, A.; Wilder, F.; Malaspina, D.; Redmon, R.;

YEAR: 2016     DOI: 10.1002/2015JA022252

electric field; injection; SAPS; subauroral; Van Allen Probes

2015

Electric field structures and waves at plasma boundaries in the inner magnetosphere

Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field line resonances, nonlinear whistler mode waves, and several types of double layer. However, it is unclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying ...

Malaspina, David; Wygant, John; Ergun, Robert; Reeves, Geoff; Skoug, Ruth; Larsen, Brian;

YEAR: 2015     DOI: 10.1002/2015JA021137

injection; inner magnetosphere; nonlinear electric field structures; plasma boundary; plasma sheet; Van Allen Probes



  1