Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 9 entries in the Bibliography.
Showing entries from 1 through 9
2018 |
Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this paper we investigate the role of magnetic trapping in acceleration and transport of the plasmasheet ions into the ring current. For this purpose we use high-resolution global MHD and three-dimensional test-particle simulations. It is shown that trapping, produced by sharp magnetic field gradients at t ... Ukhorskiy, A; Sorathia, K.; Merkin, V.; Sitnov, M.; Mitchell, D.; Gkioulidou, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025370 injections; plasma pressure; ring current; trapping; Van Allen Probes |
Plasma anisotropies and currents in the near-Earth plasma sheet and inner magnetosphere The region occupying radial distances of \~3 - 9 Earth radii (RE) in the night side, includes the near-Earth plasma sheet with stretched magnetic field lines and the inner magnetosphere with strong dipolar magnetic field. In this region, the plasma flow energy, which was injected into the inner magnetosphere from the magnetotail, is converted to particle heating and electromagnetic wave generation. These important processes are controlled by plasma anisotropies, which are the focus of this study. Using measurements of THEMIS ... Artemyev, A.; Zhang, X.-J.; Angelopoulos, V.; Runov, A.; Spence, H.; Larsen, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025232 injections; inner magnetosphere; plasma currents; plasma sheet; Van Allen Probes |
It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large-scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F-18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potenti ... Lejosne, ène; Kunduri, B.; Mozer, F.; Turner, D.; Published by: Geophysical Research Letters Published on: 04/2018 YEAR: 2018   DOI: 10.1029/2018GL077969 adiabatic invariants; drift paths; electric fields; injections; SAPS; Van Allen Probes |
2017 |
This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex serie ... Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024554 energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions |
Ion acceleration at dipolarization fronts in the inner magnetosphere During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds of keV. Plasma pressure is the source of global storm time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fron ... Ukhorskiy, A; Sitnov, M.; Merkin, V.; Gkioulidou, M.; Mitchell, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023304 |
Acceleration at Dipolarization Fronts in the Inner Magnetosphere During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds keV. Plasma pressure is the source of global storm-time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fronts ... Ukhorskiy, A; Sitnov, M.; Merkin, V.; Gkioulidou, M.; Mitchell, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016ja023304 |
2016 |
Void structure of O + ions in the inner magnetosphere observed by the Van Allen Probes The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy ~10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call ... Nakayama, Y.; Ebihara, Y.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L.; Tanaka, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016JA023013 injections; nonadiabatic acceleration; substorms; Van Allen Probes |
2015 |
Acceleration of ions by electric field pulses in the inner magnetosphere Intense (~5-15 mV/m), short-lived (<=1 min) electric field pulses have been observed to accompany earthward-propagating, dipolarizing flux bundles (DFB; flux tubes with a strong magnetic field) before they are stopped by the strong dipole field. Using Time History of Events and Macroscale Interactions During Substorms (THEMIS) observations and test particle modeling, we investigate particle acceleration around L-shell ~7-9 in the nightside magnetosphere and demonstrate that such pulses can effectively accelerate ions with te ... Artemyev, A.V.; Liu, J.; Angelopoulos, V.; Runov, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2015JA021160 |
2014 |
Testing a two-loop pattern of the substorm current wedge (SCW2L) Recent quantitative testing of the classical (region 1 sense) substorm current wedge (SCI) model revealed systematic discrepancies between the observed and predicted amplitudes, which suggested us to include additional region 2 sense currents (R2 loop) earthward of the dipolarized region (SCW2L model). Here we discuss alternative circuit geometries of the 3-D substorm current system and interpret observations of the magnetic field dipolarizations made between 6.6RE and 11RE, to quantitatively investigate the SCW2L model para ... Sergeev, V.; Nikolaev, A.; Tsyganenko, N.; Angelopoulos, V.; Runov, A.; Singer, H.; Yang, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2014 YEAR: 2014   DOI: 10.1002/2013JA019629 |
1