Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 15 entries in the Bibliography.
Showing entries from 1 through 15
2021 |
Modeling the Dynamics of Radiation Belt Electrons with Source and Loss Driven by the Solar Wind Abstract A radial diffusion model directly driven by the solar wind is developed to reproduce MeV electron variations between L=2-12 (L is L* in this study) from October 2012 to April 2015. The radial diffusion coefficient, internal source rate, quick loss due to EMIC waves, and slow loss due to hiss waves are all expressed in terms of the solar wind speed, dynamic pressure, and interplanetary magnetic field (IMF). The model achieves a prediction efficiency (PE) of 0.45 at L=5 and 0.51 at L=4 after converting the electron ph ... Xiang, Zheng; Li, Xinlin; Kapali, Sudha; Gannon, Jennifer; Ni, Binbin; Zhao, Hong; Zhang, Kun; Khoo, Leng; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028988 Radiation belt; Solar wind; flux prediction; radial diffusion; magnetopause shadowing; wave-particle interactions; Van Allen Probes |
Abstract This paper examines the rapid losses and acceleration of trapped relativistic and ultrarelativistic electron populations in the Van Allen radiation belt during the September 7-9, 2017, geomagnetic storm. By analyzing the dynamics of the last closed drift shell (LCDS) and the electron flux and phase space density (PSD), we show that the electron dropouts are consistent with magnetopause shadowing and outward radial diffusion to the compressed LCDS. During the recovery phase an in-bound pass of Van Allen Probe A shows ... Olifer, L.; Mann, I.; Ozeke, L.; Morley, S.; Louis, H.; Published by: Geophysical Research Letters Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL092351 Van Allen Probes; magnetopause shadowing; ULF wave radial diffusion; electron phase space density |
2020 |
Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ... Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi; Published by: Earth and Planetary Physics Published on: 11/2020 YEAR: 2020   DOI: https://doi.org/10.26464/epp2020060 radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes |
In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant μ ranging from 300 to 3,000 MeV G−1. We inspect the innovation vector ... Cervantes, S.; Shprits, Y; Aseev, N.; Allison, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028208 data assimilation; EMIC waves; magnetopause shadowing; innovation vector; Kalman Filter; radiation belt losses; Van Allen Probes |
The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ... Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027422 Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes |
The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Elec ... Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027422 Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes |
2018 |
A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind ... Xiang, Zheng; Tu, Weichao; Ni, Binbin; Henderson, M.; Cao, Xing; Published by: Geophysical Research Letters Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018GL078907 EMIC wave; magnetopause shadowing; Phase space density; radial diffusion; radiation belt dropout; Van Allen Probes; wave particle interaction |
We present observations of very fast radiation belt loss as resolved using high-time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The timescale of these losses is revealed to be as short as \~0.5 - 2 hours during intense magnetic storms, with some storms demonstrating almost total loss on these timescales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the Se ... Olifer, L.; Mann, I.; Morley, S.; Ozeke, L.; Choi, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2018 YEAR: 2018   DOI: 10.1029/2018JA025190 inner magnetosphere; magnetopause shadowing; Radiation belts; Van Allen Probes |
An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013 We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May \textendash 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift l ... Bin Kang, Suk-; Fok, Mei-Ching; Komar, Colin; Glocer, Alex; Li, Wen; Buzulukova, Natalia; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017JA024879 CIMI model; drift loss; dropout; magnetopause shadowing; pitch-angle distribution (PAD); RBSP; Van Allen Probes |
2017 |
Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause sta ... Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024487 EMIC wave; last closed drift shell; magnetopause shadowing; Phase space density; radiation belt dropout; Van Allen Probes |
2016 |
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the presen ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022517 Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes |
Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblrig ... Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL069140 Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes |
We examined an electron flux dropout during the 12\textendash14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12\textendash14 November. For energies of 0.8 ... Sigsbee, K.; Kletzing, C.; Smith, C.; MacDowall, Robert; Spence, Harlan; Reeves, Geoff; Blake, J.; Baker, D.; Green, J.; Singer, H.; Carr, C.; ik, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2016 YEAR: 2016   DOI: 10.1002/2014JA020877 Dst Effect; Electron Flux Dropouts; EMIC waves; magnetopause shadowing; ULF Pulsations; Van Allen Probes |
2014 |
We present simulations of the outer electron radiation belt using a new ULF wave-driven radial diffusion model, including empirical representations of loss due to chorus and plasmaspheric hiss. With an outer boundary condition constrained by in situ electron flux observations, we focus on the impacts of magnetopause shadowing and outward radial diffusion in the heart of the radiation belt. Third invariant conserving solutions are combined to simulate the L shell and time dependence of the differential flux at a fixed energy. ... Ozeke, Louis; Mann, Ian; Turner, Drew; Murphy, Kyle; Degeling, Alex; Rae, Jonathan; Milling, David; Published by: Geophysical Research Letters Published on: 10/2014 YEAR: 2014   DOI: 10.1002/2014GL060787 magnetopause shadowing; Radiation belt; ULF wave radial diffusion |
Magnetopause structure favorable for radiation belt electron loss Magnetopause shadowing is regarded as one of the major reasons for the loss of relativistic radiation belt electrons, although this has not yet been fully validated by observations. Previous simulations on this process assumed that all of the electrons encountering the magnetopause are simply lost into the magnetosheath just as ring current ions can be and did not examine details of the particle dynamics across and inside the magnetopause which has a finite thickness. In this paper, we perform test particle orbit calculation ... Kim, Kyung-Chan; Lee, Dae-Young; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2014 YEAR: 2014   DOI: 10.1002/2014JA019880 magnetopause shadowing; relativistic electron loss; test particle orbit calculation |
1