Bibliography



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2021

A combined neural network- and physics-based approach for modeling plasmasphere dynamics

AbstractIn recent years, feedforward neural networks (NNs) have been successfully applied to reconstruct global plasmasphere dynamics in the equatorial plane. These neural network-based models capture the large-scale dynamics of the plasmasphere, such as plume formation and erosion of the plasmasphere on the nightside. However, their performance depends strongly on the availability of training data. When the data coverage is limited or non-existent, as occurs during geomagnetic storms, the performance of NNs significantly de ...

Zhelavskaya, I.; Aseev, N.; . Y. Shprits, Y;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028077

plasmasphere; plasma density; neural networks; data assimilation; Kalman Filter; Machine learning; Van Allen Probes

2017

Empirical modeling of the plasmasphere dynamics using neural networks

We propose a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distributi ...

Zhelavskaya, Irina; Shprits, Yuri; c, Maria;

YEAR: 2017     DOI: 10.1002/2017JA024406

inner magnetosphere; Machine learning; Models; neural networks; plasmasphere; Van Allen Probes

2016

Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA\textquoterights Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few a ...

Zhelavskaya, I.; Spasojevic, M.; . Y. Shprits, Y; Kurth, W.;

YEAR: 2016     DOI: 10.1002/2015JA022132

electron number density; neural networks; Van Allen Probes



  1