Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 6 entries in the Bibliography.
Showing entries from 1 through 6
2021 |
Reconstruction of the Radiation Belts for Solar Cycles 17 – 24 (1933 – 2017) AbstractWe present a reconstruction of the dynamics of the radiation belts from Solar Cycles 17 – 24 which allows us to study how radiation belt activity has varied between the different solar cycles. The radiation belt simulations are produced using the Versatile Electron Radiation Belt (VERB)-3D code. The VERB-3D code simulations incorporate radial, energy, and pitch angle diffusion to reproduce the radiation belts. Our simulations use the historical measurements of Kp (available since Solar Cycle 17, i.e., 1933) to mode ... Saikin, A.; Shprits, Y; Drozdov, A; Landis, D.; Zhelavskaya, I.; Cervantes, S.; Published by: Space Weather Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020SW002524 Radiation belts; numerical modeling; Particle acceleration; Magnetosphere: inner; forecasting; Van Allen Probes |
2019 |
Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment ... Ferradas, C.; Jordanova, V.; Reeves, G.; Larsen, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019JA026649 electron lifetime; electron loss; numerical modeling; pitch angle scattering; Van Allen Probes; Weimer electric field model |
2018 |
Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field-aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self-consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qu ... Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R.; Published by: Geophysical Research Letters Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018GL077748 Alfven waves; field line resonances; kinetic effects; numerical modeling; particle trapping; Radiation belts; Van Allen Probes |
2017 |
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1-~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convec ... Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017JA024702 Geomagnetic storm; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model |
2016 |
We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details o ... Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Published by: Geophysical Research Letters Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016GL071359 drift path; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model |
Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013 Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simu ... Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022546 EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction |
1