Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 14 entries in the Bibliography.
Showing entries from 1 through 14
2020 |
Abstract On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the ... Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027424 EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering |
On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the plasmapau ... Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027424 EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering |
Direct evidence of the pitch angle scattering of relativistic electrons induced by EMIC waves In this study, we analyze an EMIC wave event of rising tone elements recorded by the Van Allen Probes. The pitch angle distributions of relativistic electrons exhibit a direct response to the two elements of EMIC waves: at the intermediate pitch angle the fluxes are lower and at the low pitch angle the fluxes are higher than those when no EMIC was observed. In particular, the observed changes in the pitch angle distributions are most likely to be caused by nonlinear wave particle interaction. The calculation of the minimum r ... Zhu, Hui; Chen, Lunjin; Claudepierre, Seth; Zheng, Liheng; Published by: Geophysical Research Letters Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019GL085637 EMIC waves; nonlinear wave-particle interaction; pitch angle scattering; Van Allen Probes |
2019 |
Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment ... Ferradas, C.; Jordanova, V.; Reeves, G.; Larsen, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019JA026649 electron lifetime; electron loss; numerical modeling; pitch angle scattering; Van Allen Probes; Weimer electric field model |
Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred ... Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026291 EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes |
2018 |
Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non-storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes-A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp-01, which detected simultan ... Capannolo, L.; Li, W.; Ma, Q.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Reeves, G.; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL078604 EMIC waves; energetic particle precipitation; pitch angle scattering; Radiation belts; Van Allen Probes; wave particle interactions |
Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes Su, Zhenpeng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017GL076754 electron instability; ELF hiss; generation mechanism; pitch angle scattering; precipitation loss; Radiation belt; Van Allen Probes |
2017 |
Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusi ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024452 Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere |
Rapid loss of radiation belt relativistic electrons by EMIC waves How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth\textquoterights outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile ... Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024169 electron loss; EMIC waves; pitch angle scattering; radial diffusion; Radiation belts; Van Allen Probes; Wave-particle interaction |
2016 |
Characteristic energy range of electron scattering due to plasmaspheric hiss We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to th ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016JA023311 electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation |
2015 |
Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave\textendashparticle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Troms\o VHF radar on 17 November 2012. Electron density enhancements w ... Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C.; Turunen, E.; Tsuchiya, F.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2015 YEAR: 2015   DOI: 10.1002/2014JA020690 EISCAT; pitch angle scattering; pulsating aurora; Van Allen Probes |
A new 3D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (>0.5 MeV) observed by the Van Allen Probes during a 10-day quiet period in March 2013. During the inward transport the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and Electromagnetic Ion Cyclotron (EMIC) waves reproduces the esse ... Ma, Q.; Li, W.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Geophysical Research Letters Published on: 02/2015 YEAR: 2015   DOI: 10.1002/2014GL062977 pitch angle scattering; radiation belts modeling; Van Allen Probes; Van Allen Probes observations |
2014 |
Evolution of relativistic outer belt electrons during an extended quiescent period To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student ... Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2014 YEAR: 2014   DOI: 10.1002/2014JA020125 electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes |
Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30\textendash100 keV, assuming that these waves were quasi-parallel. For conjunction ... Li, W.; Mourenas, D.; Artemyev, A.; Agapitov, O.; Bortnik, J.; Albert, J.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 08/2014 YEAR: 2014   DOI: 10.1002/2014GL061260 chorus waves; electron precipitation; oblique whistler; pitch angle scattering |
1