Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2020 |
Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ... Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028354 Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes |
2018 |
Survey of the Favorable Conditions for Magnetosonic Wave Excitation The ratio of the proton ring velocity (VR) to the local Alfven speed (VA), in addition to proton ring distributions, plays a key factor in the excitation of magnetosonic waves at frequencies between the proton cyclotron frequency fcp and the lower hybrid resonance frequency fLHR in the Earth\textquoterights magnetosphere. Here we investigate whether there is a statistically significant relationship between occurrences of proton rings and magnetosonic waves both outside and inside the plasmapause using particle and wave data ... Kim, Kyung-Chan; Shprits, Yuri; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017JA024865 magnetosonic equatorial noise; proton ring distribution; Van Allen Probes |
2015 |
Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes During the small storm on 14\textendash15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lowe ... Xiao, Fuliang; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Published by: Geophysical Research Letters Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015GL065745 Geomagnetic storms; magnetosonic waves; proton ring distribution; Radiation belts; Van Allen Probe results; Van Allen Probes; Wave-particle interaction |
1