Bibliography



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2019

Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements

Based on the measurements of ~100-keV to 10-MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump-on-tail (BOT). The exponential spectra are generally domin ...

Zhao, H.; Johnston, W.R.; Baker, D.N.; Li, X.; Ni, B.; Jaynes, A.N.; Kanekal, S.G.; Blake, J.B.; Claudepierre, S.G.; Reeves, G.D.; Boyd, A.J.;

YEAR: 2019     DOI: 10.1029/2019JA026697

Bump-on-tail energy spectrum; Energy spectrum; Exponential energy spectrum; Plasmapause; Power law energy spectrum; radiation belt electrons; Van Allen Probes

2018

An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements

Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L-shell (L=1 \textendash 6), magnetic local time (MLT), electron energy (~30 keV \textendash 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV elect ...

Zhao, H.; Friedel, R.; Chen, Y.; Reeves, G.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.; Claudepierre, S.; Fennell, J.; Blake, J.; Spence, H.;

YEAR: 2018     DOI: 10.1029/2018JA025277

Empirical Model; Geomagnetic storms; inner belt and slot region; Pitch angle distribution; radiation belt electrons; Van Allen Probes

Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves

Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within \textpm3\textdegree of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5\textdegree\textendash9.2\textdegree both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of\textemdash(15.7\textdegree\t ...

Ni, Binbin; Zou, Zhengyang; Fu, Song; Cao, Xing; Gu, Xudong; Xiang, Zheng;

YEAR: 2018     DOI: 10.1002/grl.v45.310.1002/2017GL075788

butterfly pitch angle distributions; off-equatorial MS waves; radiation belt electrons; Van Allen Probes

2017

Multiple-satellite observation of magnetic dip event during the substorm on 10 October, 2013

We present a multiple-satellite observation of the magnetic dip event during the substorm on October 10, 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the EMIC wave generation ...

He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G.; Xiong, Ying; Xie, Lun; Cao, Yong;

YEAR: 2017     DOI: 10.1002/2017GL074869

EMIC wave; magnetic dip; radiation belt electrons; Ring current ions; Van Allen Probes

On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*

The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron ...

YEAR: 2017     DOI: 10.1002/2016JA023658

Geomagnetic storms; magnetospheric substorms; Phase space density; radiation belt electron content; radiation belt electrons; Solar wind; Van Allen Probes

2015

High-resolution in situ observations of electron precipitation-causing EMIC waves

Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based obser ...

Rodger, Craig; Hendry, Aaron; Clilverd, Mark; Kletzing, Craig; Brundell, James; Reeves, Geoffrey;

YEAR: 2015     DOI: 10.1002/grl.v42.2210.1002/2015GL066581

EMIC waves; energetic electron precipitation; radiation belt electrons; Van Allen Probes; wave-particle interactions

Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations

Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. P ...

Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei;

YEAR: 2015     DOI: 10.1002/2015GL064955

electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes

Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in ...

Artemyev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.;

YEAR: 2015     DOI: 10.1063/1.4922061

chorus waves; CLUSTER SPACECRAFT; equatorial noise; MAGNETIC-FIELD; PLASMA; Quasi-linear diffusion; radiation belt electrons; RESONANT SCATTERING; Van Allen Probes; WHISTLER-MODE WAVES



  1