Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2019 |
In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4\textendash3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ compositio ... Qin, Murong; Hudson, Mary; Li, Zhao; Millan, Robyn; Shen, Xiaochen; Shprits, Yuri; Woodger, Leslie; Jaynes, Allison; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2018JA025726 cold ion composition; EMIC wave; minimum resonant energy; pitch angle diffusion; quasi-linear theory; relativistic electron loss; Van Allen Probes |
2017 |
Contemporaneous EMIC and Whistler-Mode Waves: Observations and Consequences for MeV Electron Loss The high variability of relativistic (MeV) electron fluxes in the Earth\textquoterights radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler-mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the conte ... Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Thorne, R.; Published by: Geophysical Research Letters Published on: 07/2017 YEAR: 2017   DOI: 10.1002/2017GL073886 electron lifetime; EMIC waves; Rediation belts; relativistic electron loss; Van Allen Probes; wave particle interaction; WHISTLER-MODE WAVES |
2016 |
Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results s ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071158 EMIC waves; magnetic storm; outer radiation belt; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the presen ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022517 Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes |
Direct evidence for EMIC wave scattering of relativistic electrons in space Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, wh ... Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022521 electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
2015 |
By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2MeV) outside the heart of outer radiation belt (L*>= 5) undergo multiple losses during a storm sudden commencement (SSC). The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α< 30\textdegree or >150\textdegree), and the flux decay of the field-aligned electrons is independent of ... Yu, J.; Li, L.Y.; Cao, J.; Yuan, Z.; Reeves, G.; Baker, D.; Blake, J.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2015 YEAR: 2015   DOI: 10.1002/2015JA021460 Electromagnetic ion cyclotron (EMIC) waves; outer radiation belt; Outward radial diffusion driven by ULF waves; Plasmaspheric Hiss; relativistic electron loss; Storm sudden commencement; Van Allen Probes |
2014 |
Magnetopause structure favorable for radiation belt electron loss Magnetopause shadowing is regarded as one of the major reasons for the loss of relativistic radiation belt electrons, although this has not yet been fully validated by observations. Previous simulations on this process assumed that all of the electrons encountering the magnetopause are simply lost into the magnetosheath just as ring current ions can be and did not examine details of the particle dynamics across and inside the magnetopause which has a finite thickness. In this paper, we perform test particle orbit calculation ... Kim, Kyung-Chan; Lee, Dae-Young; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2014 YEAR: 2014   DOI: 10.1002/2014JA019880 magnetopause shadowing; relativistic electron loss; test particle orbit calculation |
1