Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2020 |
Statistical Dependence of EMIC Wave Scattering on Wave and Plasma Parameters Abstract A recent statistical study (Qin et al., 2018, https://doi.org/10.1029/2018JA025419) has suggested that not all electromagnetic ion cyclotron (EMIC) waves can scatter relativistic electrons. However, knowledge of the factors that influence the EMIC wave scattering efficiency is still limited in observations. In our study, we perform 6 years of analysis of data from 2013 to 2018, with relativistic electron precipitation (REP) observed by POES and EMIC wave observations from Van Allen Probes. The coincidence occurrence ... Qin, Murong; Hudson, Mary; Millan, Robyn; Woodger, Leslie; Shen, Xiaochen; YEAR: 2020   DOI: 10.1029/2020JA027772 EMIC waves; relativistic electron precipitation; coincidence occurrence rate; parametric dependence; Van Allen Probes |
2018 |
Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause Relativistic Electron Precipitation (REP). In our study, we carry out 4 years of analysis from 2013 to 2016, with relativistic electron precipitation spikes obtained from POES satellites and EMIC waves observation from Van Allen Probes. Among the 473 coincidence events when POES satellites go through the region conjugate to EMIC wave activity, only 127 are associated with REP. Additionally, the coincidence occurrence rate is about 10\% higher than the ran ... Qin, Murong; Hudson, Mary; Millan, Mary; Woodger, Leslie; Shekhar, Sapna; YEAR: 2018   DOI: 10.1029/2018JA025419 causally related; coincidence occurrence rate; efficiency; EMIC wave; random coincidence occurrence rate; relativistic electron precipitation; Van Allen Probes |
2014 |
Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We ... Li, Zan; Millan, Robyn; Hudson, Mary; Woodger, Leslie; Smith, David; Chen, Yue; Friedel, Reiner; Rodriguez, Juan; Engebretson, Mark; Goldstein, Jerry; Fennell, Joseph; Spence, Harlan; YEAR: 2014   DOI: 10.1002/2014GL062273 BARREL; EMIC waves; GOES; pitch angle diffusion; RBSP; relativistic electron precipitation; Van Allen Probes |
1