Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2020 |
Van Allen Probes (VAPs) and multiple ground-based stations simultaneously observed prompt emergences and disappearances of electromagnetic ion cyclotron (EMIC) waves driven by the sequentially enhanced solar wind dynamic pressure in the dayside inner magnetosphere on 6 November 2015. The measured hot protons (> 60 keV) display enhancements of perpendicular temperature during compressions, which provides sufficient temperature anisotropies for the EMIC wave generation so that the calculated linear growth rate also agrees well ... Xue, Zuxiang; Yuan, Zhigang; Yu, Xiongdong; Published by: Geophysical Research Letters Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL091479 EMIC wave; solar wind dynamic pressure; Magnetospheric compression; Multipoint observations; Van Allen Probes |
Substorm injection and solar wind dynamic pressure have long been considered as two main drivers of electromagnetic ion cyclotron (EMIC) wave excitation, but clear observational evidence is still lacking. With Van Allen Probes data from 2012–2017, we have investigated the roles of the two EMIC wave drivers separately, by using time-modified AE+ and . Both the occurrence rate and magnetic amplitude of waves significantly increase with the enhancement of each index. During large AE+, EMIC waves are mainly generated in the du ... Chen, Huayue; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui; Published by: Geophysical Research Letters Published on: 10/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090275 EMIC wave; wave excitation; source region; substorm injection; solar wind dynamic pressure; Earth s magnetosphere; Van Allen Probes |
2018 |
With observations of Van Allen Probe A, in this letter we display a typical event where banded whistler waves shifted up their frequencies with frequency bands broadening as a response to the enhancement of solar wind dynamic pressure. Meanwhile, the anisotropy of electrons with energies about several tens of keV was observed to increase. Through the comparison of the calculated wave growth rates and observed wave spectral intensity, we suggest that those banded whistler waves observed with frequencies shifted up and frequen ... Yu, Xiongdong; Yuan, Zhigang; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yao, Fei; Funsten, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: Mar-08-2020 YEAR: 2018   DOI: 10.1029/2018GL078849 Banded whistler-mode waves; Frequency properties; inner magnetosphere; solar wind dynamic pressure; Van Allen Probes |
Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magn ... Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017GL076382 magnetosonic waves; Radiation belt; ring current; solar wind dynamic pressure; Van Allen Probes; Wave-particle interaction |
2017 |
EMIC waves covering wide L shells: MMS and Van Allen Probes observations During 04:45:00\textendash08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6\textendash9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial ... Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2017 YEAR: 2017   DOI: 10.1002/2017JA023982 EMIC waves; MMS; solar wind dynamic pressure; Van Allen Probes |
2016 |
Using the Van Allen Probe in-situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (>=1.8 MeV). The dynamic pressure enhancements (>2nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic fiel ... Yu, J.; Li, L.Y.; Cao, J.; Reeves, G.; Baker, D.; Spence, H.; Published by: Geophysical Research Letters Published on: 06/2016 YEAR: 2016   DOI: 10.1002/2016GL069029 butterfly distributions; Day-night asymmetrical variations of magnetic field; Day-night asymmetrical variations of relativistic electron pitch angle distributions; Pancake distributions; solar wind dynamic pressure; Southward interplanetary magnetic field; Van Allen Probes |
A statistical examination on the spatial distributions of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes against varying levels of geomagnetic activity (i.e., AE and SYM-H) and dynamic pressure has been performed. Measurements taken by the Electric and Magnetic Field Instrument Suite and Integrated Science for the first full magnetic local time (MLT) precession of the Van Allen Probes (September 2012\textendashJune 2014) are used to identify over 700 EMIC wave events. Spatial distributions of EMI ... Saikin, A.; Zhang, J.; Smith, C.; Spence, H.; Torbert, R.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022523 EMIC waves; geomagnetic activity; solar wind dynamic pressure; spatial distributions; Van Allen Probes |
2015 |
Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much hig ... Dai, Lei; Takahashi, Kazue; Lysak, Robert; Wang, Chi; Wygant, John; Kletzing, Craig; Bonnell, John; Cattell, Cynthia; Smith, Charles; MacDowall, Robert; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei; Tao, Xin; Chen, Lunjin; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2015 YEAR: 2015   DOI: 10.1002/2015JA021134 Geomagnetic storm; Pc4 ULF waves; poloidal waves; ring current; solar wind dynamic pressure; Van Allen Probes |
1