Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2021 |
Characteristics of low-harmonic magnetosonic waves in the Earth’s inner magnetosphere Abstract Magnetosonic (MS) waves are electromagnetic waves that play important roles in the acceleration and scattering of radiation belt electrons. However, previous statistical analyses of the global MS wave distribution were mainly restricted to magnetic field measurements. In this study, we first report a low-harmonic MS wave event observed only by the electric field instrument of Van Allen Probes. The MS wave frequencies follow the local proton gyrofrequency (fcp), which suggests the characteristics of nearly local gene ... Teng, S.; Liu, N.; Ma, Q.; Tao, X.; Published by: Geophysical Research Letters Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL093119 Low-frequency magnetosonic wave; wave generation; Magnetosonic wave spectra; Van Allen Probes |
2020 |
Electromagnetic ion cyclotron (EMIC) waves play an important role in the energy transfer among particles of different energies and species in the magnetosphere, whose drivers have been commonly recognized as solar wind compressions and storm/substorm proton injections. However, how the solar wind decompressions related to frequently occurring discontinuities compete with the proton injections in the evolution of EMIC waves has been rarely investigated. Here we present a complete end-to-end observation by Wind, THEMIS, and Va ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 08/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090296 EMIC waves; solar wind discontinuity; storm/substorm injection; wave generation; adiabatic deceleration; inner magnetosphere; Van Allen Probes |
Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Published by: Geophysical Research Letters Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019GL086040 plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation |
Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Published by: Geophysical Research Letters Published on: YEAR: 2020   DOI: 10.1029/2019GL086040 Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation |
2019 |
Characteristics and Generation of Low-Frequency Magnetosonic Waves Below the Proton Gyrofrequency We report a Van Allen Probes observation of large-amplitude magnetosonic waves with the peak intensity below the proton gyrofrequency (fcp), which may potentially be misinterpreted as electromagnetic ion cyclotron waves. The frequency spacing of the wave harmonic structure suggests that these magnetosonic waves are excited at a distant source region and propagate radially inward. We also conduct a statistical analysis of low-frequency magnetosonic waves below fcp based on the Van Allen Probes data from October 2012 to Decemb ... Teng, Shangchun; Li, Wen; Tao, Xin; Ma, Qianli; Shen, Xiaochen; Published by: Geophysical Research Letters Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2019GL085372 Below the proton gyrofrequency; Low frequency magnetosonic wave; Van Allen Probes; wave generation; Wave propagation characteristics |
2017 |
Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016GL071987 Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation |
Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ...
Published by: Geophysical Research Letters Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016GL071987 Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation |
2015 |
Very Oblique Whistler Generation By Low Energy Electron Streams Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such ... Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2015JA021135 Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation |
1