Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2021 |
Abstract With Van Allen Probes data, we present the observational support for whistler waves guided by the plasmapause based on a case study and statistical analyses. Due to the combined effects of inhomogeneous magnetic fields and plasma densities, whistler waves near the inner edge of plasmapause (plasmasphere side) will be guided by a HDD-like (HDD, high density duct) density gradient, and tend to have very small wave normal angles (WNAs ≤20°). In contrast, whistler waves around the outer edge of the plasmapause (plasm ... Chen, Rui; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui; Published by: Geophysical Research Letters Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021GL092652 Plasmapause; whistler wave; ducting effect; inner edge; outer edge; wave normal angle; Van Allen Probes |
2020 |
Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and ... Yao, Fei; Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Ouyang, Zhihai; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028527 fast magnetosonic wave; Van Allen Probe; analytical regression model; wave normal angle; Plasmapause; Van Allen Probes |
2019 |
Fast magnetosonic (MS) waves can play an important role in the evolution of the inner magnetosphere. However, there is still not an effective method to quantitatively identify such waves for observations of the Van Allen Probes reasonably. In this paper, we used Van Allen Probes data from 18 September 2012 to 30 September 2014 to find a more comprehensive automatic detection algorithm for fast MS waves through statistical analysis of the major properties, including the planarity, ellipticity, and wave normal angle of whole f ... Yuan, Zhigang; Yao, Fei; Yu, Xiongdong; Huang, Shiyong; Ouyang, Zhihai; Published by: Journal of Geophysical Research: Space Physics Published on: Apr-05-2021 YEAR: 2019   DOI: 10.1029/2018JA026387 ellipticity; magnetosonic wave; normalized distribution; planarity; Van Allen Probes; wave normal angle |
Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In thes ... Hartley, D.; Kletzing, C.; Chen, L.; Horne, R.; ik, O.; Published by: Geophysical Research Letters Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2019GL082111 chorus waves; EMFISIS; Plasmaspheric Hiss; plasmaspheric plumes; Van Allen Probes; wave normal angle |
2018 |
Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and be ... Hartley, D.; Kletzing, C.; ik, O.; Chen, L.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA024593 Bimodal; chorus waves; EMFISIS; Plasmaspheric Hiss; Van Allen Probes; wave normal angle |
2017 |
Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth\textquoterights plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles ( ... Yu, J.; Li, L; Cao, J.; Chen, L.; Wang, J.; Yang, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2017 YEAR: 2017   DOI: 10.1002/2016JA023372 hiss amplitude model; hiss wave amplitude; Plasmaspheric Hiss; propagation angle model of hiss waves; substorm dependence; Van Allen Probes; wave normal angle |
2016 |
We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 9/21/2012 to 8/1/2014. We show that statistically the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (fcP) has a distinct funnel shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma dens ... Boardsen, Scott; Hospodarsky, George; Kletzing, Craig; Engebretson, Mark; Pfaff, Robert; Wygant, John; Kurth, William; Averkamp, Terrance; Bounds, Scott; Green, Jim; De Pascuale, Sebastian; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2016 YEAR: 2016   DOI: 10.1002/2015JA021844 EMFISIS; Fast Magnetosonic Waves; latitudinal distribution; statistical study; Van Allen Probes; wave normal angle |
1