Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 8 entries in the Bibliography.
Showing entries from 1 through 8
2020 |
Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Published by: Geophysical Research Letters Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019GL086040 plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation |
Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Published by: Geophysical Research Letters Published on: YEAR: 2020   DOI: 10.1029/2019GL086040 Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation |
2018 |
Magnetosonic waves play a potentially important role in the complex evolution of the radiation belt electrons. These waves typically appear as discrete emission lines along the proton gyrofrequency harmonics, consistent with the prediction of the local Bernstein mode instability of hot proton ring distributions. Magnetosonic waves are nearly dispersionless particularly at low harmonics and therefore have the roughly unchanged frequency-time structures during the propagation. On the basis of Van Allen Probes observations, we ... Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL079232 Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; rising/falling frequency; Van Allen Probes; wave propagation |
2015 |
Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed i ... Li, W.; Chen, L.; Bortnik, J.; Thorne, R.; Angelopoulos, V.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 01/2015 YEAR: 2015   DOI: 10.1002/2014GL062832 |
2014 |
Trapping waves in Earth\textquoterights plasmasphere Earth\textquoterights magnetic field traps donut-shaped bands of radiation in a belt around the planet that react to solar eruptions by growing and shrinking. The Van Allen belts consist of two rings filled with particles from the solar wind and cosmic rays. Within the outer ring of the Van Allen belt sits the plasmasphere, which is the innermost part of the planet\textquoterights magnetic field and home to low-energy charged particles. Published by: Eos, Transactions American Geophysical Union Published on: 12/2014 YEAR: 2014   DOI: 10.1002/2014EO490016 magnetosonic waves; Van Allen Probes; wave excitation; wave propagation |
The trapping of equatorial magnetosonic waves in the Earth\textquoterights outer plasmasphere We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\textquoterights plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localize ... Ma, Q.; Li, W.; Chen, L.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.; Published by: Geophysical Research Letters Published on: 09/2014 YEAR: 2014   DOI: 10.1002/2014GL061414 magnetosonic waves; Van Allen Probes; wave excitation; wave propagation |
1