Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 39 entries in the Bibliography.
Showing entries from 1 through 39
2021 |
Modeling the Dynamics of Radiation Belt Electrons with Source and Loss Driven by the Solar Wind Abstract A radial diffusion model directly driven by the solar wind is developed to reproduce MeV electron variations between L=2-12 (L is L* in this study) from October 2012 to April 2015. The radial diffusion coefficient, internal source rate, quick loss due to EMIC waves, and slow loss due to hiss waves are all expressed in terms of the solar wind speed, dynamic pressure, and interplanetary magnetic field (IMF). The model achieves a prediction efficiency (PE) of 0.45 at L=5 and 0.51 at L=4 after converting the electron ph ... Xiang, Zheng; Li, Xinlin; Kapali, Sudha; Gannon, Jennifer; Ni, Binbin; Zhao, Hong; Zhang, Kun; Khoo, Leng; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028988 Radiation belt; Solar wind; flux prediction; radial diffusion; magnetopause shadowing; wave-particle interactions; Van Allen Probes |
Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ... Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.; Published by: Geophysical Research Letters Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020GL091564 electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes |
2020 |
Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models Abstract The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss w ... Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028403 chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions |
The Impenetrable Barrier: Suppression of Chorus Wave Growth by VLF Transmitters Rapid radiation belt recovery following storm time depletion involves local acceleration of multi-MeV electrons in nonlinear interactions with VLF chorus waves. Previous studies of an apparent impenetrable barrier at L ~ 2.8 focused on diffusion and precipitation loss mechanisms for an explanation of the sharp reduction of multi-MeV electron fluxes earthward of L ~ 3. Van Allen Probes observations for cases when the plasmasphere is contracted earthward of L ~ 3 indicate that strong coherent signals from VLF transmitter ... Foster, John; Erickson, Philip; Omura, Yoshiharu; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027913 Radiation belt; Plasmapause; VLF transmitters; wave-particle interactions; Electron acceleration; nonlinear VLF chorus; Van Allen Probes |
Global Model of Whistler Mode Chorus in the Near-Equatorial Region (|λm|< 18°) We extend our database of whistler mode chorus, based on data from seven satellites, by including ∼3 years of data from Radiation Belt Storm Probes (RBSP)-A and RBSP-B and an additional ∼6 years of data from Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A, THEMIS-D, and THEMIS-E. The new database allows us to probe the near-equatorial region in detail, revealing new features. In the equatorial source region, |λm|<6°, strong wave power is most extensive in the 0.1–0.4fce bands in the r ... Meredith, Nigel; Horne, Richard; Shen, Xiao-Chen; Li, Wen; Bortnik, Jacob; Published by: Geophysical Research Letters Published on: 05/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL087311 whistler mode chorus; wave-particle interactions; Radiation belts; Van Allen Probes |
Whistler-mode hiss waves generally determine MeV electron lifetimes inside the plasmasphere. We use Van Allen Probes measurements to provide the first comprehensive statistical survey of plasmaspheric hiss-driven quasi-linear pitch-angle diffusion rates and lifetimes of MeV electrons as a function of L*, local time, and AE index, taking into account hiss power, electron plasma frequency to gyrofrequency ratio ωpe/Ωce, hiss frequency at peak power ωm, and cross correlations of these parameters. We find that during geomagne ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Claudepierre, S.; Hospodarsky, G.; Bonnell, J.; Published by: Geophysical Research Letters Published on: 05/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020GL088052 electron lifetimes; plasmasphere; hiss waves; wave-particle interactions; Van Allen Probes |
Evolutions of equatorial ring current ions during a magnetic storm In this paper, we present evolutions of the phase space density (PSD) spectra of ring current (RC) ions based on observations made by Van Allen Probe B during a geomagnetic storm on 23–24 August 2016. By analyzing PSD spectra ratios from the initial phase to the main phase of the storm, we find that during the main phase, RC ions with low magnetic moment μ values can penetrate deeper into the magnetosphere than can those with high μ values, and that the μ range of PSD enhancement meets the relationship: S(O+) > S(He+) > ... Huang, Zheng; Yuan, Zhigang; Yu, Xiongdong; Published by: Earth and Planetary Physics Published on: 03/2020 YEAR: 2020   DOI: 10.26464/epp2020019 ULF waves; ring current; wave-particle interactions; Radial Transport; Geomagnetic storm; Decay rates; Van Allen Probes |
Published by: Ring Current Investigations The Quest for Space Weather Prediction Published on: YEAR: 2020   DOI: 10.1016/B978-0-12-815571-4.00006-8 collisional losses; wave-particle interactions; Geomagnetic storms; Magnetopause Losses; ring current; field line curvature scattering; Van Allen Probes |
2019 |
Earth\textquoterights Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era Discovery of the Earth\textquoterights Van Allen radiation belts by instruments flown on Explorer 1 in 1958 was the first major discovery of the Space Age. The observation of distinct inner and outer zones of trapped megaelectron volt (MeV) particles, primarily protons at low altitude and electrons at high altitude, led to early models for source and loss mechanisms including Cosmic Ray Albedo Neutron Decay for inner zone protons, radial diffusion for outer zone electrons and loss to the atmosphere due to pitch angle scatter ... Published by: Journal of Geophysical Research: Space Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2018JA025940 Particle acceleration; particle loss; particle transport; Radiation belts; Van Allen Probes; wave-particle interactions |
Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and co ... Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2018JA026401 empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions |
Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demon ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL083446 magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions |
A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 ... Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026066 energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions |
Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. F ... Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan; Published by: Geophysical Research Letters Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018GL081550 EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions |
2018 |
In Earth\textquoterights inner magnetosphere, electromagnetic waves in the ultra-low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift-resonance theory, linearization is applied under the assumption of weak wave-particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, ... Li, Li; Zhou, Xu-Zhi; Omura, Yoshiharu; Wang, Zi-Han; Zong, Qiu-Gang; Liu, Ying; Hao, Yi-Xin; Fu, Sui-Yan; Kivelson, Margaret; Rankin, Robert; Claudepierre, Seth; Wygant, John; Published by: Geophysical Research Letters Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018GL079038 drift resonance; nonlinear process; Particle acceleration; Radiation belts; ULF waves; Van Allen Probes; wave-particle interactions |
Based on the wave and proton observations by Van Allen Probes A and B, we examined the effects of hot protons (0.01\textendash50 keV) on fast magnetosonic (MS) waves inside and outside the Earth\textquoterights plasmasphere. In the low-density plasma trough outside the plasmapause, the gyroresonance interactions between hot protons and MS waves not only cause the MS wave growth at some frequencies but also lead to the damping of MS waves at other frequencies, which depends on the proton phase space density gradient and the a ... Liu, Bin; Li, Liuyuan; Yu, Jiang; Cao, Jinbin; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017JA024676 damping of magnetosonic waves; growth of magnetosonic waves; magnetosonic waves; magnetospheric hot protons; Van Allen Probes; wave-particle interactions |
2017 |
This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex serie ... Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024554 energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions |
Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from ... Aseev, N.; Shprits, Y; Drozdov, A; Kellerman, A.; Usanova, M.; Wang, D.; Zhelavskaya, I.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024485 electron loss; EMIC waves; Radiation belts; ultrarelativistic electrons; Van Allen Probes; wave-particle interactions |
Bounce-resonant interactions with magnetospheric waves have been proposed as important contributing mechanisms for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce-resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch-angle scattering rates, we show ... Cao, Xing; Ni, Binbin; Summers, Danny; Zou, Zhengyang; Fu, Song; Zhang, Wenxun; Published by: Geophysical Research Letters Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017GL075104 bounce resonance; Low-frequency hiss; Radiation Belt Dynamics; Van Allen Probes; wave-particle interactions |
In September 2014 an unusually long-lasting (≳10 days) ultra-relativistic electron flux depletion occurred in the outer radiation belt despite ongoing solar wind forcing. We simulate this period using a ULF wave radial diffusion model, driven by observed ULF wave power coupled to flux variations at the outer boundary at L* = 5, including empirical electron loss models due to chorus and hiss wave scattering. Our results show that unexplained rapid main phase loss, that depletes the belt within hours, is essential to explain ... Ozeke, Louis; Mann, Ian; Murphy, Kyle; Sibeck, David; Baker, Daniel; Published by: Geophysical Research Letters Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2017GL072811 radial diffusion; Radiation belt; ULF waves; ultrarelativistic; Van Allen Probes; wave-particle interactions |
We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the p ... Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2015JA022219 Ducting; Van Allen Probes; wave-particle interactions; Whistlers |
We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the ... Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2015JA022219 Ducting; Van Allen Probes; wave-particle interactions; Whistlers |
Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and el ... Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016JA023429 nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave-particle interactions |
2016 |
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In thi ... Yu, Yiqun; Jordanova, Vania; Ridley, Aaron; Albert, Jay; Horne, Richard; Jeffery, Christopher; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022585 Diffusion Coefficient; electron lifetime; electron precipitation; ionospheric conductivity; MI coupling; Van Allen Probes; wave-particle interactions |
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, w ... Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.; Published by: Geophysical Research Letters Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016GL070008 fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions |
2015 |
High-resolution in situ observations of electron precipitation-causing EMIC waves Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based obser ... Rodger, Craig; Hendry, Aaron; Clilverd, Mark; Kletzing, Craig; Brundell, James; Reeves, Geoffrey; Published by: Geophysical Research Letters Published on: 11/2015 YEAR: 2015   DOI: 10.1002/grl.v42.2210.1002/2015GL066581 EMIC waves; energetic electron precipitation; radiation belt electrons; Van Allen Probes; wave-particle interactions |
Giant pulsations on the afternoonside: Geostationary satellite and ground observations Giant pulsations (Pgs) are a special class of oscillations recognized in ground magnetometer records as exhibiting highly regular sinusoidal waveforms in the east-west component with periods around 100s. Previous statistical studies showed that Pgs occur almost exclusively on the morningside with peak occurrence in the postmidnight sector. In this paper, we present observations of Pgs extending to the afternoonside, using data from the GOES13 and 15 geostationary satellites and multiple ground magnetometers located in North ... Motoba, Tetsuo; Takahashi, Kazue; Rodriguez, Juan; Russell, Christopher; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2015 YEAR: 2015   DOI: 10.1002/2015JA021592 giant pulsations; ground-space conjunction; wave-particle interactions |
Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth\textquoterights radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capa ... de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2015 YEAR: 2015   DOI: 10.1002/2015JA021148 Plasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model |
This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on t ... Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Spense, Harlan; Reeves, Geoffrey; Baker, Daniel; Published by: Geophysical Research Letters Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015GL065230 inner magnetosphere; numerical simulations; Radiation belts; ring current; Van Allen Probes; wave-particle interactions |
Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and ma ... Hartley, D.; Chen, Y.; Kletzing, C.; Denton, M.; Kurth, W.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2015 YEAR: 2015   DOI: 10.1002/2014JA020808 chorus waves; EMFISIS; energetic electrons; Radiation belts; Van Allen Probes; wave-particle interactions |
2014 |
Electron lifetimes from narrowband wave-particle interactions within the plasmasphere This paper is devoted to the systematic study of electron lifetimes from narrowband wave-particle interactions within the plasmasphere. It relies on a new formulation of the bounce-averaged quasi-linear pitch angle diffusion coefficients parameterized by a single frequency, ω, and wave normal angle, θ. We first show that the diffusion coefficients scale with ω/Ωce, where Ωce is the equatorial electron gyrofrequency, and that maximal pitch angle diffusion occurs along the line α0 = π/2\textendashθ, where α0 is the eq ... Ripoll, J.-F.; Albert, J.; Cunningham, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2014 YEAR: 2014   DOI: 10.1002/2014JA020217 DSX; electron; narrowband; plasmasphere; wave-particle interactions |
We present in situ observations of a shock-induced substorm-like event on 13 April 2013 observed by the newly launched Van Allen twin probes. Substorm-like electron injections with energy of 30\textendash500 keV were observed in the region from L\~5.2 to 5.5 immediately after the shock arrival (followed by energetic electron drift echoes). Meanwhile, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 150 s emerged followin ... Hao, Y.; Zong, Q.-G.; Wang, Y.; Zhou, X.-Z.; Zhang, Hui; Fu, S; Pu, Z; Spence, H.; Blake, J.; Bonnell, J.; Wygant, J.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2014 YEAR: 2014   DOI: 10.1002/2014JA020023 energetic particles; interplanetary shock; magnetotail ULF wave; poloidal and toroidal mode; Van Allen Probes; wave-particle interactions |
On the threshold energization of radiation belt electrons by double layers Using a Hamiltonian approach, we quantify the energization threshold of electrons interacting with radiation belts\textquoteright double layers discovered by Mozer et al. (2013). We find that double layers with electric field amplitude E0 ranging between 10 and 100 mV/m and spatial scales of the order of few Debye lengths are very efficient in energizing electrons with initial velocities v|| <= vth to 1 keV levels but are unable to energize electrons with E >= 100 keV. Our results indicate that the localized electric field a ... Published by: Journal of Geophysical Research: Space Physics Published on: 10/2014 YEAR: 2014   DOI: 10.1002/2014JA020236 |
Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17\textendash25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly withi ... Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2014 YEAR: 2014   DOI: 10.1002/jgra.v119.910.1002/2014JA020161 Chorus; ELF/VLF; Radiation belts; subauroral latitudes; wave-particle interactions |
In the Earth\textquoterights radiation belts the flux of relativistic electrons is highly variable, sometimes changing by orders of magnitude within a few hours. Since energetic electrons can damage satellites it is important to understand the processes driving these changes and, ultimately, to develop forecasts of the energetic electron population. One approach is to use three-dimensional diffusion models, based on a Fokker-Planck equation. Here we describe a model where the phase-space density is set to zero at the outer L ... Glauert, Sarah; Horne, Richard; Meredith, Nigel; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2014 YEAR: 2014   DOI: 10.1002/jgra.v119.910.1002/2014JA020092 |
Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming \~10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering ... Khazanov, G.; Sibeck, D.; Tel\textquoterightnikhin, A.; Kronberg, T.; Published by: Physics of Plasmas Published on: 08/2014 YEAR: 2014   DOI: 10.1063/1.4892185 Diffusion; Electron scattering; Nonlinear waves; wave-particle interactions; Whistler waves |
2013 |
Inner belt energetic protons are a hindrance to development of space technologies. The emission of electromagnetic ion cyclotron (EMIC) waves from spaceborne transmitters has been proposed as a way to solve this problem. The interaction between particles and narrowband emissions has been typically studied using nonlinear test particle simulations. We show that this formulation results in a random walk of the inner belt protons in velocity space. In this paper we compute bounce-averaged pitch angle diffusion rates from test p ... de Soria-Santacruz, M.; Orlova, K.; Martinez-Sanchez, M.; Shprits, Y; Published by: Geophysical Research Letters Published on: 09/2013 YEAR: 2013   DOI: 10.1002/grl.50925 |
Storm-induced energization of radiation belt electrons: Effect of wave obliquity New Cluster statistics allow us to determine for the first time the variations of both the obliquity and intensity of lower-band chorus waves as functions of latitude and geomagnetic activity near L\~5. The portion of wave power in very oblique waves decreases during highly disturbed periods, consistent with increased Landau damping by inward-penetrating suprathermal electrons. Simple analytical considerations as well as full numerical calculations of quasi-linear diffusion rates demonstrate that early-time electron accelera ... Artemyev, A.; Agapitov, O.; Mourenas, D.; Krasnoselskikh, V.; Zelenyi, L.; Published by: Geophysical Research Letters Published on: 08/2013 YEAR: 2013   DOI: 10.1002/grl.50837 |
2012 |
Energetic radiation belt electron precipitation showing ULF modulation 1] The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 period range (45 s\textendash600 s) on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers ... Brito, T.; Woodger, L.; Hudson, M.; MILLAN, R; Published by: Geophysical Research Letters Published on: 11/2012 YEAR: 2012   DOI: 10.1029/2012GL053790 Charged particle motion and acceleration; Energetic particles: precipitating; Radiation belts; wave-particle interactions |
2011 |
Understanding relativistic electron losses with BARREL The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth\textquoterights atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(\~20kg) balloon payloads will be launched, providing multi-point ... Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 07/2011 YEAR: 2011   DOI: 10.1016/j.jastp.2011.01.006 inner magnetosphere; precipitation; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions |
1