Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 160 entries in the Bibliography.
Showing entries from 51 through 100
2017 |
Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7\textendash5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, bu ... Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Published by: Geophysical Research Letters Published on: 05/2017 YEAR: 2017   DOI: 10.1002/2017GL073051 ECH waves; RBSP results; Van Allen Probes; Wave-particle interaction |
Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, ... Tang, C.; Wang, Y.; Ni, B.; Zhang, J.-C.; Reeves, G.; Su, Z.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2017 YEAR: 2017   DOI: 10.1002/2017JA023905 relativistic electrons; Substorm Injections; the outer radiation belt; the seed population; Van Allen Probes |
Space Weather Research: Earth\textquoterights Radiation Belts Fundamental research on Earth\textquoterights space radiation environment is essential for the design and the operations of modern technologies \textendash for communications, weather, navigation, national security \textendash that fly in the hostile space weather conditions above Earth\textquoterights atmosphere. As the technologies become ever more advanced, more sophisticated understanding \textendash and even predictability \textendash of the environment is required for mission success Lanzerotti, Louis; Baker, Daniel; Published by: Space Weather Published on: 05/2017 YEAR: 2017   DOI: 10.1002/2017SW001654 Earth\textquoterights radiation belts; Space Weather Research; Van Allen Probes |
Using the Van Allen Probe long-term (2013 \textendash 2015) observations and quasi-linear simulations of wave-particle interactions, we examine the combined or competing effects of whistler-mode waves (chorus or hiss) and magnetosonic (MS) waves on energetic (<0.5 MeV) and relativistic (>0.5 MeV) electrons inside and outside the plasmasphere. Although whistler-mode chorus waves and MS waves can singly or jointly accelerate electrons from the hundreds of keV energy to the MeV energy in the low-density trough, most of the rela ... Li, L; Yu, J.; Cao, J.; Yang, J; Li, X.; Baker, D.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2017 YEAR: 2017   DOI: 10.1002/2016JA023634 magnetosonic waves; Plasmapause movement; Spatial variation of outer radiaton belt; Spatial variation of slot region; Temporal-spatial variations of chorus waves; Temporal-spatial variations of plasmaspheric hiss; Van Allen Probes |
Generation of extremely low frequency chorus in Van Allen radiation belts Recent studies have shown that chorus can efficiently accelerate the outer radiation belt electrons to relativistic energies. Chorus, previously often observed above 0.1 equatorial electron gyrofrequency fce, was generated by energetic electrons originating from Earth\textquoterights plasma sheet. Chorus below 0.1 fce has seldom been reported until the recent data from Van Allen Probes, but its origin has not been revealed so far. Because electron resonant energy can approach the relativistic level at extremely low frequency ... Xiao, Fuliang; Liu, Si; Tao, Xin; Su, Zhenpeng; Zhou, Qinghua; Yang, Chang; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023561 ELF chorus waves; RBSP results; relativistic distribution; Van Allen Probes; Wave-particle interaction |
Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly dist ... Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Published by: Geophysical Research Letters Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2017GL073116 butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction |
In September 2014 an unusually long-lasting (≳10 days) ultra-relativistic electron flux depletion occurred in the outer radiation belt despite ongoing solar wind forcing. We simulate this period using a ULF wave radial diffusion model, driven by observed ULF wave power coupled to flux variations at the outer boundary at L* = 5, including empirical electron loss models due to chorus and hiss wave scattering. Our results show that unexplained rapid main phase loss, that depletes the belt within hours, is essential to explain ... Ozeke, Louis; Mann, Ian; Murphy, Kyle; Sibeck, David; Baker, Daniel; Published by: Geophysical Research Letters Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2017GL072811 radial diffusion; Radiation belt; ULF waves; ultrarelativistic; Van Allen Probes; wave-particle interactions |
Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ... Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1029/1999JA900445 energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes |
Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016GL071987 Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation |
Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and el ... Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016JA023429 nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave-particle interactions |
2016 |
Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy fr ... Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016JA023600 2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes |
We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including s ... Schiller, Q.; Kanekal, S.; Jian, L.; Li, X.; Jones, A.; Baker, D.; Jaynes, A.; Spence, H.; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071628 |
Prompt recovery of MeV electron populations in the post-storm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly non-linear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant non-adiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by ... Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016JA023429 nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave particle interactions |
Characteristic energy range of electron scattering due to plasmaspheric hiss We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to th ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016JA023311 electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation |
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013 Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25\textendash26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1\textendash3.9 and magnetic local time (MLT) = 21.0\texten ... Zhang, Jichun; Halford, Alexa; Saikin, Anthony; Huang, Chia-Lin; Spence, Harlan; Larsen, Brian; Reeves, Geoffrey; Millan, Robyn; Smith, Charles; Torbert, Roy; Kurth, William; Kletzing, Craig; Blake, Bernard; Fennel, Joseph; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2016 YEAR: 2016   DOI: 10.1002/2016JA022918 BARREL; EMIC waves; FFT; Geomagnetic storm; relativistic electron precipitation (REP); Van Allen Probes |
Current energetic particle sensors Several energetic particle sensors designed to make measurements in the current decade are described and their technology and capabilities discussed and demonstrated. Most of these instruments are already on orbit or approaching launch. These include the Magnetic Electron Ion Spectrometers (MagEIS) and the Relativistic Electron Proton Telescope (REPT) that are flying on the Van Allen Probes, the Fly\textquoterights Eye Electron Proton Spectrometers (FEEPS) flying on the Magnetospheric Multiscale (MMS) mission, and Dosimeters ... Fennell, J.; Blake, J.; Claudepierre, S.; Mazur, J.; Kanekal, S.; O\textquoterightBrien, P.; Baker, D.; Crain, W.; Mabry, D.; Clemmons, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022588 |
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the presen ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022517 Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes |
We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially ... Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.; Published by: Geophysical Research Letters Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016GL069691 energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes |
Trapped electrons in Earth\textquoterights outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impac ... Kanekal, S.; Baker, D.; Fennell, J.; Jones, A.; Schiller, Q.; Richardson, I.; Li, X.; Turner, D.; Califf, S.; Claudepierre, S.; Wilson, L.; Jaynes, A.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA022596 electron; energizaiton; IP shock; ultrarelativsti; Van Allen Probes |
The relationship between the plasmapause and outer belt electrons We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. ... Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA023046 Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes |
Direct evidence for EMIC wave scattering of relativistic electrons in space Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, wh ... Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022521 electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013 Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simu ... Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022546 EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction |
Statistical Properties of the Radiation Belt Seed Population We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of ... Boyd, A.J.; Spence, H.E.; Huang, C.-L.; Reeves, G.; Baker, D.; Turner, D.L.; Claudepierre, S.; Fennell, J.; Blake, J.; Shprits, Y.Y.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022652 Phase space density; Radiation belt; seed population; Van Allen Probes |
Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave\textendashparticle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion ... Mann, I.; Ozeke, L.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Reeves, G.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.; Published by: Nature Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1038/nphys3799 Astrophysical plasmas; Magnetospheric physics; Van Allen Probes |
Using the Van Allen Probe in-situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (>=1.8 MeV). The dynamic pressure enhancements (>2nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic fiel ... Yu, J.; Li, L.Y.; Cao, J.; Reeves, G.; Baker, D.; Spence, H.; Published by: Geophysical Research Letters Published on: 06/2016 YEAR: 2016   DOI: 10.1002/2016GL069029 butterfly distributions; Day-night asymmetrical variations of magnetic field; Day-night asymmetrical variations of relativistic electron pitch angle distributions; Pancake distributions; solar wind dynamic pressure; Southward interplanetary magnetic field; Van Allen Probes |
Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF ... Foster, J.; Erickson, P.; Baker, D.; Jaynes, A.; Mishin, E.; Fennel, J.; Li, X.; Henderson, M.; Kanekal, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.610.1002/2016JA022509 |
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical p ... Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.610.1002/2016JA022400 chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes |
An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnet ... Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.; Published by: Geophysical Research Letters Published on: 06/2016 YEAR: 2016   DOI: 10.1002/grl.v43.1210.1002/2016GL069643 Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes |
Compressional ULF wave modulation of energetic particles in the inner magnetosphere We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional mag ... Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022706 Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes |
Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblrig ... Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL069140 Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes |
Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observ ... Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J.; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022366 chorus waves; Plasmaspheric Hiss; RBSP results; Van Allen Probes |
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth\textquoterights radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the M ... Ma, Q.; Li, W.; Thorne, R.; Nishimura, Y.; Zhang, X.-J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022507 electron acceleration and loss; energy-dependent diffusion; radial diffusion; radiation belt simulation; Van Allen Probes |
Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been ... Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny; Published by: Geophysical Research Letters Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016GL067853 butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes |
Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namel ... Souza, V.; Vieira, L.; Medeiros, C.; Da Silva, L.; Alves, L.; Koga, D.; Sibeck, D.; Walsh, B.; Kanekal, S.; Jauer, P.; Rockenbach, M.; Dal Lago, A.; Silveira, M.; Marchezi, J.; Mendes, O.; Gonzalez, W.; Baker, D.; Published by: Space Weather Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2015SW001349 pitch angle distributions; self-organizing maps; Van Allen belt\textquoterights monitoring; Van Allen Probes |
Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; a ... Zhao, H.; Li, X.; Baker, D.; Claudepierre, S.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016JA022358 deep injections; Geomagnetic storms; ring current; ring current energy content; ring current electrons; Van Allen Probes |
The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6\textendash3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnet ... Li, Jinxing; Bortnik, Jacob; Thorne, Richard; Li, Wen; Ma, Qianli; Baker, Daniel; Reeves, Geoffrey; Fennell, Joseph; Spence, Harlan; Kletzing, Craig; Kurth, William; Hospodarsky, George; Angelopoulos, Vassilis; Blake, Bernard.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016JA022370 butterfly distributions; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes |
Inward diffusion and loss of radiation belt protons Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at ... Selesnick, R.; Baker, D.; Jaynes, A.; Li, X.; Kanekal, S.; Hudson, M.; Kress, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2016 YEAR: 2016   DOI: 10.1002/2015JA022154 |
Energetic electron observations in Earth\textquoterights radiation belts are typically sparse and multi-point studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross-calibration into two parts \textendash one that removes any spectral assumptions fr ... Morley, Steven; Sullivan, John; Henderson, Michael; Blake, Bernard; Baker, Daniel; Published by: Space Weather Published on: 02/2016 YEAR: 2016   DOI: 10.1002/2015SW001339 |
We examined an electron flux dropout during the 12\textendash14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12\textendash14 November. For energies of 0.8 ... Sigsbee, K.; Kletzing, C.; Smith, C.; MacDowall, Robert; Spence, Harlan; Reeves, Geoff; Blake, J.; Baker, D.; Green, J.; Singer, H.; Carr, C.; ik, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2016 YEAR: 2016   DOI: 10.1002/2014JA020877 Dst Effect; Electron Flux Dropouts; EMIC waves; magnetopause shadowing; ULF Pulsations; Van Allen Probes |
2015 |
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definit ... Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Wygant, J.; Published by: Nature Communications Published on: 12/2015 YEAR: 2015   DOI: 10.1038/ncomms10096 |
Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions. We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner ... Reeves, Geoffrey; Friedel, Reiner; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Claudepierre, Seth; Fennell, Joseph; Turner, Drew; Denton, Mick; Spence, H.; Blake, Bernard; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2015 YEAR: 2015   DOI: 10.1002/2015JA021569 Acceleration; energetic particles; Inner zone; Outer Zone; Radiation belts; Slot region; Van Allen Probes |
By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2MeV) outside the heart of outer radiation belt (L*>= 5) undergo multiple losses during a storm sudden commencement (SSC). The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α< 30\textdegree or >150\textdegree), and the flux decay of the field-aligned electrons is independent of ... Yu, J.; Li, L.Y.; Cao, J.; Yuan, Z.; Reeves, G.; Baker, D.; Blake, J.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2015 YEAR: 2015   DOI: 10.1002/2015JA021460 Electromagnetic ion cyclotron (EMIC) waves; outer radiation belt; Outward radial diffusion driven by ULF waves; Plasmaspheric Hiss; relativistic electron loss; Storm sudden commencement; Van Allen Probes |
Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes During the small storm on 14\textendash15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lowe ... Xiao, Fuliang; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Published by: Geophysical Research Letters Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015GL065745 Geomagnetic storms; magnetosonic waves; proton ring distribution; Radiation belts; Van Allen Probe results; Van Allen Probes; Wave-particle interaction |
During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response inc ... Kanekal, S.; Baker, D.; Henderson, M.; Li, W.; Fennell, J.; Zheng, Y.; Richardson, I.; Jones, A.; Ali, A.; Elkington, S.; Jaynes, A.; Li, X.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015JA021395 CME; HSS; Van Allen Probes; IP shock; relativistic electrons |
Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged sout ... Li, W.; Thorne, R.; Bortnik, J.; Baker, D.; Reeves, G.; Kanekal, S.; Spence, H.; Green, J.; Published by: Geophysical Research Letters Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015GL065342 Chorus wave; Electron acceleration; solar wind conditions; Van Allen Probes |
This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on t ... Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Spense, Harlan; Reeves, Geoffrey; Baker, Daniel; Published by: Geophysical Research Letters Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015GL065230 inner magnetosphere; numerical simulations; Radiation belts; ring current; Van Allen Probes; wave-particle interactions |
Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute m ... Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2015 YEAR: 2015   DOI: 10.1002/2015JA021533 Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes |
Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. P ... Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei; Published by: Geophysical Research Letters Published on: 07/2015 YEAR: 2015   DOI: 10.1002/2015GL064955 electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes |
Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen ... Jaynes, A.N.; Baker, D.N.; Singer, H.J.; Rodriguez, J.V.; Loto\textquoterightaniu, T.M.; Ali, A.; Elkington, S.R.; Li, X.; Kanekal, S.G.; Fennell, J.F.; Li, W.; Thorne, R.M.; Kletzing, C.A.; Spence, H.E.; Reeves, G.D.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2015 YEAR: 2015   DOI: 10.1002/2015JA021234 Radiation belts; relativistic electrons; substorms; ULF waves; Van Allen Probes; VLF waves |
We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 - 6.3, with a lower frequency band 0.1 - 0.5fce and a peak spectral density \~[10-4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (\~ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a ... He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2015 YEAR: 2015   DOI: 10.1002/2015JA021376 chorus wave excitation; energetic electrons; Geomagnetic storm; Van Allen Probes; Van Allen probes results; Wave-particle interaction |