Bibliography



Found 114 entries in the Bibliography.


Showing entries from 51 through 100


2017

Generation of extremely low frequency chorus in Van Allen radiation belts

Recent studies have shown that chorus can efficiently accelerate the outer radiation belt electrons to relativistic energies. Chorus, previously often observed above 0.1 equatorial electron gyrofrequency fce, was generated by energetic electrons originating from Earth\textquoterights plasma sheet. Chorus below 0.1 fce has seldom been reported until the recent data from Van Allen Probes, but its origin has not been revealed so far. Because electron resonant energy can approach the relativistic level at extremely low frequency ...

Xiao, Fuliang; Liu, Si; Tao, Xin; Su, Zhenpeng; Zhou, Qinghua; Yang, Chang; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

YEAR: 2017     DOI: 10.1002/2016JA023561

ELF chorus waves; RBSP results; relativistic distribution; Van Allen Probes; Wave-particle interaction

Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations

Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang;

YEAR: 2017     DOI: 10.1016/j.asr.2016.12.035

Van Allen Probes

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly dist ...

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume

We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the p ...

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected p ...

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume

We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the ...

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected p ...

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

\textquotedblleftZipper-like\textquotedblright periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations

An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single s ...

Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.;

YEAR: 2017     DOI: 10.1002/2016JA023536

magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0. ...

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0. ...

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

2016

Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet

We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details o ...

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

YEAR: 2016     DOI: 10.1002/2016GL071359

drift path; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model

Ion nose spectral structures observed by the Van Allen Probes

We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose ...

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

YEAR: 2016     DOI: 10.1002/2016JA022942

inner magnetosphere; ion injection; Ion structure; plasma sheet; ring current; Van Allen Probes

The complex nature of storm-time ion dynamics: Transport and local acceleration

Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained ...

Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.;

YEAR: 2016     DOI: 10.1002/2016GL070878

plasmasheet; Van Allen Probes

Unraveling the excitation mechanisms of highly oblique lower band chorus waves

Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth\textquoterights magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first ...

Li, W.; Mourenas, D.; Artemyev, A.; Bortnik, J.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Funsten, H.; Spence, H.;

YEAR: 2016     DOI: 10.1002/grl.v43.1710.1002/2016GL070386

beam instability; lower band chorus; oblique chorus excitation; temperature anisotropy; Van Allen Probes

The relationship between the plasmapause and outer belt electrons

We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. ...

Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.;

YEAR: 2016     DOI: 10.1002/2016JA023046

Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes

In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions

With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMI ...

Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Huang, Shiyong; Li, Haimeng; Yu, Tao; Qiao, Zheng; Wygant, John; Funsten, Herbert;

YEAR: 2016     DOI: 10.1002/2016JA022573

EMIC waves; He+ ion heating; Ring current ions; stop band; Van Allen Probes

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simu ...

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

The Source of O + in the Storm-time Ring Current

A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, t ...

Kistler, L.M.; Mouikis, C.; Spence, H.E.; Menz, A.M.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; Lanzerotti, L.J.;

YEAR: 2016     DOI: 10.1002/2015JA022204

Geomagnetic storm; Ionosphere; oxygen; plasma sheet; Plasma Sources; ring current; Van Allen Probes

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional mag ...

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; . Y. Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblrig ...

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; . Y. Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.;

YEAR: 2016     DOI: 10.1002/2016GL069140

Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes

Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes

The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observ ...

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J.; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.;

YEAR: 2016     DOI: 10.1002/2016JA022366

chorus waves; Plasmaspheric Hiss; RBSP results; Van Allen Probes

Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm

The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a \textquotedblleftred alert\textquotedblright, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer dat ...

Reiff, P.; Daou, A.; . Y. Sazykin, S; Nakamura, R.; Hairston, M.; Coffey, V.; Chandler, M.; Anderson, B.; Russell, C.; Welling, D.; Fuselier, S.; Genestreti, K.;

YEAR: 2016     DOI: 10.1002/2016GL069154

Dipolarization; Geomagnetic storm; MMS; prediction; simulation; Space weather; Van Allen Probes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been ...

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been ...

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; a ...

Zhao, H.; Li, X.; Baker, D.; Claudepierre, S.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.;

YEAR: 2016     DOI: 10.1002/2016JA022358

deep injections; Geomagnetic storms; ring current; ring current energy content; ring current electrons; Van Allen Probes

Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: relationship between electric fields and energetic particle injections

Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes r ...

Liu, Jiang; Angelopoulos, V.; Zhang, Xiao-Jia; Turner, D.; Gabrielse, C.; Runov, A.; Li, Jinxing; Funsten, H.; Spence, H.;

YEAR: 2016     DOI: 10.1002/2015JA021691

dipolarization front; dipolarizing flux bundle; energetic particle injection; geosynchronous orbit; magnetic storm; Particle acceleration

2015

Observations of discrete magnetosonic waves off the magnetic equator

Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. We report observations of magnetosonic waves well off the equator at geomagnetic latitudes from -16.5\textdegreeto -17.9\textdegree and L shell ~2.7\textendash4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proto ...

Zhima, Zeren; Chen, Lunjin; Fu, Huishan; Cao, Jinbin; Horne, Richard; Reeves, Geoff;

YEAR: 2015     DOI: 10.1002/2015GL066255

discrete structure; magnetsonic wave; off-equatorial region

Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.

We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner ...

Reeves, Geoffrey; Friedel, Reiner; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Claudepierre, Seth; Fennell, Joseph; Turner, Drew; Denton, Mick; Spence, H.; Blake, Bernard; Baker, D.;

YEAR: 2015     DOI: 10.1002/2015JA021569

Acceleration; energetic particles; Inner zone; Outer Zone; Radiation belts; Slot region; Van Allen Probes

Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that suc ...

Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.;

YEAR: 2015     DOI: 10.1002/2015JA021440

energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind

Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere

Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are sma ...

Shue, Jih-Hong; Hsieh, Yi-Kai; W. Y. Tam, Sunny; Wang, Kaiti; Fu, Hui; Bortnik, Jacob; Tao, Xin; Hsieh, Wen-Chieh; Pi, Gilbert;

YEAR: 2015     DOI: 10.1002/2015GL066107

Chorus; local time distribution; repetition period

\textquotedblleftTrunk-like\textquotedblright heavy ion structures observed by the Van Allen Probes

Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report \textquotedbllefttrunk-like\textquotedblright ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant\textquoterights trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energ ...

Zhang, J.-C.; Kistler, L.; Spence, H.; Wolf, R.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B.; Niehof, J.; MacDonald, E.; Friedel, R.; Ferradas, C.; Luo, H.;

YEAR: 2015     DOI: 10.1002/2015JA021822

inner magnetosphere; ion injection; Ion structure; magnetic cloud; magnetic storm; Van Allen Probes

Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes

During the small storm on 14\textendash15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lowe ...

Xiao, Fuliang; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

YEAR: 2015     DOI: 10.1002/2015GL065745

Geomagnetic storms; magnetosonic waves; proton ring distribution; Radiation belts; Van Allen Probe results; Van Allen Probes; Wave-particle interaction

Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1\textendash4 MeV outer zone relativistic electrons, it is He+-band and O+-band wa ...

Ni, Binbin; Cao, Xing; Zou, Zhengyang; Zhou, Chen; Gu, Xudong; Bortnik, Jacob; Zhang, Jichun; Fu, Song; Zhao, Zhengyu; Shi, Run; Xie, Lun;

YEAR: 2015     DOI: 10.1002/2015JA021466

electron loss time scales; EMIC waves; outer radiation belt; relativistic electrons; resonant wave-particle interactions

The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute m ...

Zhao, H.; Li, X.; Baker, D.; Fennell, J.; Blake, J.; Larsen, B.; Skoug, R.; Funsten, H.; Friedel, R.; Reeves, G.; Spence, H.; Mitchell, D.; Lanzerotti, L.; Rodriguez, J.;

YEAR: 2015     DOI: 10.1002/2015JA021533

Geomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes

Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations

Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L\~5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over \~40s and a dispersionless injection of electrons up to \~3 MeV. P ...

Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John; Cattell, Cynthia; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel; Li, Xinlin; Malaspina, David; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew; Reeves, Geoffrey; Funsten, Herbert; Spence, Harlan; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei;

YEAR: 2015     DOI: 10.1002/2015GL064955

electric fields; radiation belt electrons; substorm dipolarization; substorm injection; Van Allen Probes

Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities

We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 - 6.3, with a lower frequency band 0.1 - 0.5fce and a peak spectral density \~[10-4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (\~ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a ...

He, Yihua; Xiao, Fuliang; Zhou, Qinghua; Yang, Chang; Liu, Si; Baker, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

YEAR: 2015     DOI: 10.1002/2015JA021376

chorus wave excitation; energetic electrons; Geomagnetic storm; Van Allen Probes; Van Allen probes results; Wave-particle interaction

Multipoint observations of the open-closed field line boundary as observed by the Van Allen Probes and geostationary satellites during the November 14 th 2012 geomagnetic storm

The twin Van Allen Probes spacecraft witnessed a series of lobe encounters between 0200 and 0515 UT on November 14th 2012. Although lobe entry had been observed previously by the other spacecraft, the two Van Allen Probe spacecraft allow us to observe the motion of the boundary for the first time. Moreover, this event is unique in that it consists of a series of six quasi-periodic lobe entries. The events occurred on the dawn flank between 4 and 6.6 local time and at altitudes between 5.6 and 6.2 RE. During the events Dst dr ...

Dixon, P.; MacDonald, E.; Funsten, H.; Glocer, A.; Grande, M.; Kletzing, C.; Larsen, B.; Reeves, G.; Skoug, R.; Spence, H.; Thomsen, M.;

YEAR: 2015     DOI: 10.1002/2014JA020883

Lobes; Magnetosphere; Modelling; Open/closed field line boundary; Van Allen Probes

Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus

An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω≃0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency c ...

Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, Peter;

YEAR: 2015     DOI: 10.1002/2015GL064182

banded chorus; nonlinear theory; subcyclotron resonance

Wave-driven butterfly distribution of Van Allen belt relativistic electrons

Van Allen radiation belts consist of relativistic electrons trapped by Earth\textquoterights magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90\textdegree further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day\textendashnight asymmetry in Earth\textquoterights magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of th ...

Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D.; Spence, H.; Funsten, H.; Blake, J.;

YEAR: 2015     DOI: 10.1038/ncomms9590

Van Allen Probes

Study of EMIC wave excitation using direct ion measurements

With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution function ...

Min, Kyungguk; Liu, Kaijun; Bonnell, John; Breneman, Aaron; Denton, Richard; Funsten, Herbert; Jahn, öerg-Micha; Kletzing, Craig; Kurth, William; Larsen, Brian; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

YEAR: 2015     DOI: 10.1002/2014JA020717

EMIC wave excitation; observation; linear theory and hybrid simulation; Van Allen Probes

Disappearance of plasmaspheric hiss following interplanetary shock

Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatroug ...

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

YEAR: 2015     DOI: 10.1002/2015GL063906

Cyclotron instability; Cyclotron resonance; interplanetary shock; Landau damping; Plasmaspheric Hiss; Radiation belt; Van Allen Probes

Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave\textendashparticle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Troms\o VHF radar on 17 November 2012. Electron density enhancements w ...

Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C.; Turunen, E.; Tsuchiya, F.;

YEAR: 2015     DOI: 10.1002/2014JA020690

EISCAT; pitch angle scattering; pulsating aurora; Van Allen Probes

Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radi ...

Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

YEAR: 2015     DOI: 10.1002/2014GL062964

Cyclotron resonance; Exohiss; Landau damping; Plasmaspheric Hiss; Radiation belt electron loss; Van Allen Probes

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or bel ...

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

2014

Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 ho ...

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Zong, Q.-G.; He, Zhaoguo; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

YEAR: 2014     DOI: 10.1002/2014JA020709

Chorus wave; Electron acceleration; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Excitation of nightside magnetosonic waves observed by Van Allen Probes

During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L =1.8-4.7 and MLT =17-22 h, with a frequency range ~10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ~10 keV, were also observed in L =3.2-4.6 and L =5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three dimensional ray tracing to investigate the instability, propagatio ...

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

YEAR: 2014     DOI: 10.1002/2014JA020481

magnetosonic wave; RBSP results; Van Allen Probes; Wave-particle interaction

First observation of rising-tone magnetosonic waves

Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90\textdegree and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be \textquotedbllefttemporally continuous\textquotedblright in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, ~1 Hz/s, is ...

Fu, H.; Cao, J.; Zhima, Z.; Khotyaintsev, Y.; Angelopoulos, V.; ik, O.; Omura, Y.; Taubenschuss, U.; Chen, L.; . Y. Huang, S;

YEAR: 2014     DOI: 10.1002/grl.v41.2110.1002/2014GL061867

discrete; frequency sweep rate; magnetosonic wave; nonlinear wave-particle interaction; Plasmapause; rising tone

Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations

Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell (PIC) simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly ...

Fu, Xiangrong; Cowee, Misa; Friedel, Reinhard; Funsten, Herbert; Gary, Peter; Hospodarsky, George; Kletzing, Craig; Kurth, William; Larsen, Brian; Liu, Kaijun; MacDonald, Elizabeth; Min, Kyungguk; Reeves, Geoffrey; Skoug, Ruth; Winske, Dan;

YEAR: 2014     DOI: 10.1002/2014JA020364

Chorus; HOPE; particle-in-cell simulation; Van Allen Probes

Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations

Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell (PIC) simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly ...

Fu, Xiangrong; Cowee, Misa; Friedel, Reinhard; Funsten, Herbert; Gary, Peter; Hospodarsky, George; Kletzing, Craig; Kurth, William; Larsen, Brian; Liu, Kaijun; MacDonald, Elizabeth; Min, Kyungguk; Reeves, Geoffrey; Skoug, Ruth; Winske, Dan;

YEAR: 2014     DOI: 10.1002/2014JA020364

Chorus; HOPE; particle-in-cell simulation; Van Allen Probes



  1      2      3