Bibliography



Found 117 entries in the Bibliography.


Showing entries from 51 through 100


2016

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been ...

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves

The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6\textendash3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnet ...

Li, Jinxing; Bortnik, Jacob; Thorne, Richard; Li, Wen; Ma, Qianli; Baker, Daniel; Reeves, Geoffrey; Fennell, Joseph; Spence, Harlan; Kletzing, Craig; Kurth, William; Hospodarsky, George; Angelopoulos, Vassilis; Blake, Bernard.;

YEAR: 2016     DOI: 10.1002/2016JA022370

butterfly distributions; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

2015

Observations of discrete magnetosonic waves off the magnetic equator

Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. We report observations of magnetosonic waves well off the equator at geomagnetic latitudes from -16.5\textdegreeto -17.9\textdegree and L shell ~2.7\textendash4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proto ...

Zhima, Zeren; Chen, Lunjin; Fu, Huishan; Cao, Jinbin; Horne, Richard; Reeves, Geoff;

YEAR: 2015     DOI: 10.1002/2015GL066255

discrete structure; magnetsonic wave; off-equatorial region

Electron scattering by magnetosonic waves in the inner magnetosphere

We investigate the importance of electron scattering by magnetosonic waves in the Earth\textquoterights inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements, and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of t ...

Ma, Qianli; Li, Wen; Thorne, Richard; Bortnik, Jacob; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2015     DOI: 10.1002/2015JA021992

Electron scattering; magnetosonic waves; Van Allen Probes; Van Allen Probes statistics

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations

Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth\textquoterights radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capa ...

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2015     DOI: 10.1002/2015JA021148

Plasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model

Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged sout ...

Li, W.; Thorne, R.; Bortnik, J.; Baker, D.; Reeves, G.; Kanekal, S.; Spence, H.; Green, J.;

YEAR: 2015     DOI: 10.1002/2015GL065342

Chorus wave; Electron acceleration; solar wind conditions; Van Allen Probes

Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes

Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen ...

Jaynes, A.N.; Baker, D.N.; Singer, H.J.; Rodriguez, J.V.; Loto\textquoterightaniu, T.M.; Ali, A.; Elkington, S.R.; Li, X.; Kanekal, S.G.; Fennell, J.F.; Li, W.; Thorne, R.M.; Kletzing, C.A.; Spence, H.E.; Reeves, G.D.;

YEAR: 2015     DOI: 10.1002/2015JA021234

Radiation belts; relativistic electrons; substorms; ULF waves; Van Allen Probes; VLF waves

Nonlinear Bounce Resonances between Magnetosonic Waves and Equatorially Mirroring Electrons

Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the fluxof these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from a equatorial pitch angle of 90 degrees down to lower values. However this mechanism has not been uniquely identified y ...

Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard; Li, Jinxing; Dai, Lei; Zhan, Xiaoya;

YEAR: 2015     DOI: 10.1002/2015JA021174

bounce resonance; equatorioal noise; magnetosonic waves; nonlinear; Radiation belt; wave particle interaction

Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 hours in MLT

Although most studies of the effects of EMIC waves on Earth\textquoterights outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent shar ...

Engebretson, M.; Posch, J.; Wygant, J.; Kletzing, C.; Lessard, M.; Huang, C.-L.; Spence, H.; Smith, C.; Singer, H.; Omura, Y.; Horne, R.; Reeves, G.; Baker, D.; Gkioulidou, M.; Oksavik, K.; Mann, I.; Raita, T; Shiokawa, K.;

YEAR: 2015     DOI: 10.1002/2015JA021227

EMIC waves; magnetospheric compressions; Radiation belts; Van Allen Probes

Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics

Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~55 ...

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Nishimura, Y.;

YEAR: 2015     DOI: 10.1002/2015JA021048

hiss diffusion coefficient; hiss frequency spectrum; Plasmaspheric Hiss; Van Allen Probes

Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in ge ...

Ni, Binbin; Zou, Zhengyang; Gu, Xudong; Zhou, Chen; Thorne, Richard; Bortnik, Jacob; Shi, Run; Zhao, Zhengyu; Baker, Daniel; Kanekal, Shrikhanth; Spence, Harlan; Reeves, Geoffrey; Li, Xinlin;

YEAR: 2015     DOI: 10.1002/2015JA021065

adiation belt ultra-relativistic electrons; decay timescales; Geomagnetic storms; Pitch angle distribution; resonant wave-particle interactions; Van Allen Probes

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conj ...

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Modeling inward diffusion and slow decay of energetic electrons in the Earth\textquoterights outer radiation belt

A new 3D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (>0.5 MeV) observed by the Van Allen Probes during a 10-day quiet period in March 2013. During the inward transport the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and Electromagnetic Ion Cyclotron (EMIC) waves reproduces the esse ...

Ma, Q.; Li, W.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.;

YEAR: 2015     DOI: 10.1002/2014GL062977

pitch angle scattering; radiation belts modeling; Van Allen Probes; Van Allen Probes observations

First Evidence for Chorus at a Large Geocentric Distance as a Source of Plasmaspheric Hiss: Coordinated THEMIS and Van Allen Probes Observation

Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed i ...

Li, W.; Chen, L.; Bortnik, J.; Thorne, R.; Angelopoulos, V.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2015     DOI: 10.1002/2014GL062832

Chorus; hiss; wave propagation; Van Allen Probes

2014

Electron losses from the radiation belts caused by EMIC waves

Electromagnetic Ion Cyclotron (EMIC) waves cause electron loss in the radiation belts by resonating with high-energy electrons at energies greater than about 500 keV. However, their effectiveness has not been fully quantified. Here we determine the effectiveness of EMIC waves by using wave data from the fluxgate magnetometer on CRRES to calculate bounce-averaged pitch angle and energy diffusion rates for L*=3.5\textendash7 for five levels of Kp between 12 and 18 MLT. To determine the electron loss, EMIC diffusion rates were ...

Kersten, Tobias; Horne, Richard; Glauert, Sarah; Meredith, Nigel; Fraser, Brian; Grew, Russell;

YEAR: 2014     DOI: 10.1002/2014JA020366

electron losses; EMIC waves

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the out ...

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data

The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising a ...

Gao, X.; Li, W.; Thorne, R.; Bortnik, J.; Angelopoulos, V.; Lu, Q.; Tao, X.; Wang, S.;

YEAR: 2014     DOI: 10.1002/2014JA020158

bandwidth; coherence coefficient; nonlinear; quasi-linear; THEMIS; whistler mode waves

Survey analysis of chorus intensity at Saturn

In order to conduct theoretical studies or modeling of pitch angle scattering of electrons by whistler mode chorus emission at Saturn, a knowledge of chorus occurrence and magnetic intensity levels, PB, as well as the distribution of PB relative to frequency and spatial parameters is essential. In this paper an extensive survey of whistler mode magnetic intensity levels at Saturn is carried out, and Gaussian fits of PB are performed. We fit the spectrum of wave magnetic intensity between the lower hybrid frequency and fceq/2 ...

Menietti, J.; Averkamp, T.; Groene, J.; Horne, R.; . Y. Shprits, Y; Woodfield, E.; Hospodarsky, G.; Gurnett, D.;

YEAR: 2014     DOI: 10.1002/jgra.v119.1010.1002/2014JA020523

Space physics

Simulating the Earth\textquoterights radiation belts: Internal acceleration and continuous losses to the magnetopause

In the Earth\textquoterights radiation belts the flux of relativistic electrons is highly variable, sometimes changing by orders of magnitude within a few hours. Since energetic electrons can damage satellites it is important to understand the processes driving these changes and, ultimately, to develop forecasts of the energetic electron population. One approach is to use three-dimensional diffusion models, based on a Fokker-Planck equation. Here we describe a model where the phase-space density is set to zero at the outer L ...

Glauert, Sarah; Horne, Richard; Meredith, Nigel;

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020092

magnetopause; Radiation belt; wave-particle interactions

Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of It\^o stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch ...

Zheng, Liheng; Chan, Anthony; Albert, Jay; Elkington, Scot; Koller, Josef; Horne, Richard; Glauert, Sarah; Meredith, Nigel;

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020127

adiabatic invariant coordinates; diffusion equation; fully 3-D model; Radiation belt; stochastic differential equation

The trapping of equatorial magnetosonic waves in the Earth\textquoterights outer plasmasphere

We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\textquoterights plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localize ...

Ma, Q.; Li, W.; Chen, L.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.;

YEAR: 2014     DOI: 10.1002/2014GL061414

magnetosonic waves; Van Allen Probes; wave excitation; wave propagation

Calculation of whistler-mode wave intensity using energetic electron precipitation

The energetic electron population measured by multiple low-altitude POES satellites is used to infer whistlermode wave amplitudes using a physics-based inversion technique. We validate this technique by quantitatively analyzing a conjunction event between the Van Allen Probes and POES, and find that the inferred hiss wave amplitudes from POES electron measurements agree remarkably well with directly measured hiss waves amplitudes. We also use this technique to construct the global distribution of chorus wave intensity with e ...

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929965

Electron traps; Energy measurement; Plasma measurements; Van Allen Probes

Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves

Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30\textendash100 keV, assuming that these waves were quasi-parallel. For conjunction ...

Li, W.; Mourenas, D.; Artemyev, A.; Agapitov, O.; Bortnik, J.; Albert, J.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2014     DOI: 10.1002/2014GL061260

chorus waves; electron precipitation; oblique whistler; pitch angle scattering

Generation of Unusually Low Frequency Plasmaspheric Hiss

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma ...

Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.;

YEAR: 2014     DOI: 10.1002/2014GL060628

Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes

Generation of Unusually Low Frequency Plasmaspheric Hiss

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma ...

Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.;

YEAR: 2014     DOI: 10.1002/2014GL060628

Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is suggested to be fundamentally important for accelerating seed electron population to ultra-relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when Van Allen Probes observed very rapid electron acceleration up to multi MeV within \~15 hours. A clear peak in electron phase space density observed at L* \~ 4 indicates that the internal local acceleration process ...

Thorne, R.; Li, W.; Ma, Q.; Ni, B.; Bortnik, J.;

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929882

Atmospheric waves; Van Allen Belts; Van Allen Probes

A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data

Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the tech ...

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Green, Janet; Kletzing, Craig; Kurth, William; Hospodarsky, George; Pich, Maria;

YEAR: 2014     DOI: 10.1002/jgra.v119.710.1002/2014JA019935

electron precipitation; global wave distribution; magnetospheric chorus; physics-based technique; wave resonant scattering

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration proce ...

Li, W.; Thorne, R.; Ma, Q.; Ni, B.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Kanekal, S.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.;

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019945

Van Allen Probes

Competing source and loss mechanisms due to wave-particle interactions in Earth\textquoterights outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm

Drastic variations of Earth\textquoterights outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA\textquoterights Van Allen Probes, THEMIS, and SAMPEX missions and NOAA\textquoterights GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm\textquoterights main phase drop ...

Turner, D.; Angelopoulos, V.; Li, W.; Bortnik, J.; Ni, B.; Ma, Q.; Thorne, R.; Morley, S.; Henderson, M.; Reeves, G.; Usanova, M.; Mann, I.; Claudepierre, S.; Blake, J.; Baker, D.; Huang, C.-L.; Spence, H.; Kurth, W.; Kletzing, C.; Rodriguez, J.;

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2014JA019770

Van Allen Probes

Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\textquoterights radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) ch ...

Baker, D.; Jaynes, A.; Li, X.; Henderson, M.; Kanekal, S.; Reeves, G.; Spence, H.; Claudepierre, S.; Fennell, J.; Hudson, M.; Thorne, R.; Foster, J.; Erickson, P.; Malaspina, D.; Wygant, J.; Boyd, A.; Kletzing, C.; Drozdov, A.; . Y. Shprits, Y;

YEAR: 2014     DOI: 10.1002/2013GL058942

Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrate ...

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes

Magnetosonic wave excitation by ion ring distributions in the Earth\textquoterights inner magnetosphere

Combining Time History of Events and Macroscale Interaction during Substorms (THEMIS) wave and particle observations and a quantitative calculation of linear wave growth rate, we demonstrate that magnetosonic (MS) waves can be locally excited by ion ring distributions in the Earth\textquoterights magnetosphere when the ion ring energy is comparable to the local Alfven energy. MS waves in association with ion ring distributions were observed by THEMIS A on 24 November 2010 in the afternoon sector, both outside the plasmapause ...

Ma, Qianli; Li, Wen; Chen, Lunjin; Thorne, Richard; Angelopoulos, Vassilis;

YEAR: 2014     DOI: 10.1002/2013JA019591

magnetosonic waves; ring current; THEMIS observation; wave excitation

Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis

We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations sug ...

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Nishimura, Y.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Gu, X.;

YEAR: 2014     DOI: 10.1002/2013GL059132

Van Allen Probes

2013

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emissio ...

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes

Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss

We perform a comprehensive analysis to evaluate hiss-induced scattering effect on the pitch angle evolution and associated decay processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique hiss component is negligible. Quasi-parallel approximation is good for evaluation of hiss-driven electron scattering rates <= 2 MeV. However, realistic wave propagation angles as a function of latitude must be considered to accurately quantify hiss scattering rates above 2 MeV, and ambient plasma ...

Ni, Binbin; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; Chen, Lunjin;

YEAR: 2013     DOI: 10.1002/2013JA019260

Van Allen Probes

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including ke ...

Kletzing, C.; Kurth, W.; Acuna, M.; MacDowall, R.; Torbert, R.; Averkamp, T.; Bodet, D.; Bounds, S.; Chutter, M.; Connerney, J.; Crawford, D.; Dolan, J.; Dvorsky, R.; Hospodarsky, G.; Howard, J.; Jordanova, V.; Johnson, R.; Kirchner, D.; Mokrzycki, B.; Needell, G.; Odom, J.; Mark, D.; Pfaff, R.; Phillips, J.; Piker, C.; Remington, S.; Rowland, D.; Santolik, O.; Schnurr, R.; Sheppard, D.; Smith, C.; Thorne, R.; Tyler, J.;

YEAR: 2013     DOI: 10.1007/s11214-013-9993-6

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ...

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ...

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes

We adopt a physics-based technique to infer chorus wave amplitudes from the low-altitude electron population (30\textendash100 keV) measured by multiple Polar Orbiting Environmental Satellites (POES), which provide extensive coverage over a broad region in L-shell and magnetic local time (MLT). This technique is validated by analyzing conjunction events between the Van Allen Probes measuring chorus wave amplitudes near the equator and POES satellites measuring the 30\textendash100 keV electron population at the conjugate low ...

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2013     DOI: 10.1002/grl.v40.1710.1002/grl.50920

Van Allen Probes

An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons

Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, m ...

Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.; Claudepierre, S.; Wygant, J.; Thaller, S.;

YEAR: 2013     DOI: 10.1002/grl.50787

Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local ...

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magneti ...

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly ...

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

2012

Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm

1] The temporal and spatial development of the ring current is evaluated during the 23\textendash26 October 2002 high-speed stream (HSS) storm, using a kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). The effects of nondipolar magnetic field configuration are investigated on both ring current ion and electron dynamics. As the self-consistent magnetic field is depressed at large (>4RE) radial distances on the nightside during the storm main phase, the particles\textquoteright d ...

Jordanova, V.; Welling, D.; Zaharia, S.; Chen, L.; Thorne, R.;

YEAR: 2012     DOI: 10.1029/2011JA017433

2007

Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms

[1] Relativistic electrons in the outer radiation belt are subjected to pitch angle and energy diffusion by chorus, electromagnetic ion cyclotron (EMIC), and hiss waves. Using quasi-linear diffusion coefficients for cyclotron resonance with field-aligned waves, we examine whether the resonant interactions with chorus waves produce a net acceleration or loss of relativistic electrons. We also examine the effect of pitch angle scattering by EMIC and hiss waves during the main and recovery phases of a storm. The numerical simul ...

Li, W.; . Y. Shprits, Y; Thorne, R.;

YEAR: 2007     DOI: 10.1029/2007JA012368

Local Loss due to VLF/ELF/EMIC Waves

Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers

[1] Energetic electrons (E > 100 keV) in the Earth\textquoterights radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the s ...

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Anderson, Roger;

YEAR: 2007     DOI: 10.1029/2007JA012413

Local Loss due to VLF/ELF/EMIC Waves

Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms

[1] Energetic electrons (>=50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (>=150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), a ...

Thorne, R.; . Y. Shprits, Y; Meredith, N.; Horne, R.; Li, W.; Lyons, L.;

YEAR: 2007     DOI: 10.1029/2006JA012176

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms

[1] Energetic electrons (>=50 keV) are injected into the slot region (2 < L < 4) between the inner and outer radiation belts during the early recovery phase of geomagnetic storms. Enhanced convection from the plasma sheet can account for the storm-time injection at lower energies but does not explain the rapid appearance of higher-energy electrons (>=150 keV). The effectiveness of either radial diffusion (driven by enhanced ULF waves) or local acceleration (during interactions with enhanced whistler mode chorus emissions), a ...

Thorne, R.; . Y. Shprits, Y; Meredith, N.; Horne, R.; Li, W.; Lyons, L.;

YEAR: 2007     DOI: 10.1029/2006JA012176

Shock-Induced Transport. Slot Refilling and Formation of New Belts.

Review of radiation belt relativistic electron losses

We present a brief review of radiation belt electron losses which are vitally important for controlling the dynamics of the radiation belts. A historical overview of early observations is presented, followed by a brief description of important known electron loss mechanisms. We describe key theoretical results and observations related to pitch-angle scattering by resonant interaction with plasmaspheric hiss, whistler-mode chorus and electromagnetic ion cyclotron waves, and review recent work on magnetopause losses. In partic ...

MILLAN, R; THORNE, R;

YEAR: 2007     DOI: 10.1016/j.jastp.2006.06.019

Local Loss due to VLF/ELF/EMIC Waves

2006

Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event

The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L \~ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativis ...

Bortnik, J.; Thorne, R.; O\textquoterightBrien, T.; Green, J.; Strangeway, R.; . Y. Shprits, Y; Baker, D.;

YEAR: 2006     DOI: 10.1029/2006JA011802

Local Loss due to VLF/ELF/EMIC Waves



  1      2      3