Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 202 entries in the Bibliography.
Showing entries from 51 through 100
2018 |
We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17\textendash18 March 2013 and non\textendashstorm time of 19\textendash20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramaticall ... Ma, Q.; Li, W.; Bortnik, J.; Thorne, R.; Chu, X.; Ozeke, L.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2018 YEAR: 2018   DOI: 10.1002/2017JA025114 electron accelerationl whistler mode waves; radial diffusion; radiation belt simulation; Van Allen Probes; Van Allen Probes observation |
Characteristics of Sudden Commencements Observed by Van Allen Probes in the Inner Magnetosphere We have statistically studied sudden commencement (SC) by using the data acquired from Van Allen Probes (VAP) in the inner magnetosphere (L = 3.0\textendash6.5) and GOES spacecraft at geosynchronous orbit (L =\~ 6.7) from October 2012 to September 2017. During the time period, we identified 85 SCs in the inner magnetosphere and 90 SCs at geosynchronous orbit. Statistical results of the SC events reveal the following characteristics. (1) There is strong seasonal dependence of the geosynchronous SC amplitude in the radial BV c ... Fathy, A.; Kim, K.-H.; Park, J.-S.; Jin, H.; Kletzing, C.; Wygant, J.; Ghamry, E.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA024770 |
We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes\textquoteright (1.1\textendash5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van ... Saikin, A.A.; Jordanova, V.K.; Zhang, J.C.; Smith, C.W.; Spence, H.E.; Larsen, B.A.; Reeves, G.D.; Torbert, R.B.; Kletzing, C.A.; Zhelavskaya, I.S.; Shprits, Y.Y.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1016/j.jastp.2018.01.024 EMIC waves Van Allen Probes Linear theory Wave generation; Van Allen Probes |
Observation and Numerical Simulation of Cavity Mode Oscillations Excited by an Interplanetary Shock Cavity mode oscillations (CMOs) are basic magnetohydrodynamic eigenmodes in the magnetosphere predicted by theory and are expected to occur following the arrival of an interplanetary shock. However, observational studies of shock-induced CMOs have been sparse. We present a case study of a dayside ultra-low-frequency (ULF) wave event that exhibited CMO properties. The event occurred immediately following the arrival of an interplanetary shock at 0829 UT on 15 August 2015. The shock was observed in the solar wind by the Time H ... Takahashi, Kazue; Lysak, Robert; Vellante, Massimo; Kletzing, Craig; Hartinger, Michael; Smith, Charles; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA024639 Cavity mode oscillations; interplanetary shock; Van Allen Probes |
Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and be ... Hartley, D.; Kletzing, C.; ik, O.; Chen, L.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA024593 Bimodal; chorus waves; EMFISIS; Plasmaspheric Hiss; Van Allen Probes; wave normal angle |
2017 |
Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15\textendash100 eV) electrons. A combined investigation of wave and electron distribution characteristics o ... Ma, Q.; Artemyev, A.; Mourenas, D.; Li, W.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017GL075892 Landau damping; maximum refractive index; oblique chorus waves; thermal electron effects; Van Allen Probes; Van Allen Probes observation |
Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. How ... Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017JA023949 |
We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus ... Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 11/2017 YEAR: 2017   DOI: 10.1002/2017GL075001 |
Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wa ... Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024474 chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes |
This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex serie ... Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024554 energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions |
A neural network model of three-dimensional dynamic electron density in the inner magnetosphere A plasma density model of the inner magnetosphere is important for a variety of applications including the study of wave-particle interactions, and wave excitation and propagation. Previous empirical models have been developed under many limiting assumptions and do not resolve short-term variations, which are especially important during storms. We present a three-dimensional dynamic electron density (DEN3D) model developed using a feedforward neural network with electron densities obtained from four satellite missions. The D ... Chu, X.; Bortnik, J.; Li, W.; Ma, Q.; Denton, R.; Yue, C.; Angelopoulos, V.; Thorne, R.; Darrouzet, F.; Ozhogin, P.; Kletzing, C.; Wang, Y.; Menietti, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024464 |
The characteristic response of whistler mode waves to interplanetary shocks Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at p ... Yue, Chao; Chen, Lunjin; Bortnik, Jacob; Ma, Qianli; Thorne, Richard; Angelopoulos, Vassilis; Li, Jinxing; An, Xin; Zhou, Chen; Kletzing, Craig; Reeves, Geoffrey; Spence, Harlan; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024574 IP shocks; MLT dependent; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes; whistler mode chorus |
Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusi ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024452 Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere |
We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event ar ... Ren, Jie; Zong, Q.; Miyoshi, Y.; Zhou, X.; Wang, Y.; Rankin, R.; Yue, C.; Spence, H.; Funsten, H.; Wygant, J.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024316 Cold plasmaspheric electrons; drift-bounce resonance; Plasma instability; Plasmaspheric boundary layer; Substorm-injected protons; ULF waves; Van Allen Probes |
Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with ... Yue, Chao; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; An, Xin; Chappell, C.; Gerrard, Andrew; Lanzerotti, Louis; Shi, Quanqi; Reeves, Geoffrey; Spence, Harlan; Mitchell, Donald; Gkioulidou, Matina; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024421 bi-directional field-aligned; H+ Pitch angle distributions; plasmaspheric H+; radiation belt H+; ring current; Van Allen Probes; warm Plasma cloak |
Effects of whistler mode hiss waves in March 2013 We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 ... Ripoll, J.-F.; Santol?k, O.; Reeves, G.; Kurth, W.; Denton, M.; Loridan, V.; Thaller, S.; Kletzing, C.; Turner, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2017 YEAR: 2017   DOI: 10.1002/2017JA024139 diffusion coefficients; electron lifetimes; energy-structure; Radiation belts; Van Allen Probes; Whistler-mode hiss |
We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the ... Wang, Chih-Ping; Thorne, Richard; Liu, Terry; Hartinger, Michael; Nagai, Tsugunobu; Angelopoulos, Vassilis; Wygant, John; Breneman, Aaron; Kletzing, Craig; Reeves, Geoffrey; Claudepierre, Seth; Spence, Harlan; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2017 YEAR: 2017   DOI: 10.1002/2016JA023610 IMF discontinuity; inner magnetosphere; Kelvin-Helmholtz vortices; magnetosheath; Pc5 waves; plasma sheet; Van Allen Probes |
Bayesian Spectral Analysis of Chorus Sub-Elements from the Van Allen Probes We develop a Bayesian spectral analysis technique that calculates the probability distribution functions of a superposition of wave-modes each described by a linear growth rate, a frequency and a chirp rate. The Bayesian framework has a number of advantages, including 1) reducing the parameter space by integrating over the amplitude and phase of the wave, 2) incorporating the data from each channel to determine the model parameters such as frequency which leads to high resolution results in frequency and time, 3) the ability ... Crabtree, Chris; Tejero, Erik; Ganguli, Gurudas; Hospodarsky, George; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2017 YEAR: 2017   DOI: 10.1002/2016JA023547 |
A technique to quantitatively determine the sheath impedance of the Van Allen Probes Electric Field and Waves (EFW) instrument is presented. This is achieved, for whistler mode waves, through a comparison between the total electric field wave power spectra calculated from magnetic field observations and cold plasma theory, and the total electric field wave power measured by the EFW spherical double probes instrument. In a previous study, a simple density-dependent sheath impedance model was developed in order to account for ... Hartley, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Bounds, S.; Averkamp, T.; Bonnell, J.; ik, O.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023597 antenna sheath impedance; EFW; electric field; EMFISIS; Van Allen Probes; whistler mode waves |
We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the p ... Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2015JA022219 Ducting; Van Allen Probes; wave-particle interactions; Whistlers |
We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultralow frequency (ULF) waves on 29 October 2013. Oscillations in electron flux were observed at the period of \~450 s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from ... Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, J.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016GL071252 drift resonance; injection; PSD gradient; ULF waves; Van Allen Probes |
We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the ... Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2015JA022219 Ducting; Van Allen Probes; wave-particle interactions; Whistlers |
Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whist ... Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016JA023706 coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode |
Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whist ... Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016JA023706 coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode |
EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013\textendash2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types\textemdashwaves observed b ... Blum, L.; Bonnell, J.; Agapitov, O.; Paulson, K.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016GL072316 EMIC waves; inner magnetosphere; multipoint; spatial scales; Van Allen Probes |
Externally driven plasmaspheric ULF waves observed by the Van Allen Probes We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultralow frequency (ULF) waves. The waves exhibited strong spectral power in the 5\textendash40 mHz band and included multiharmonic toroidal waves visible up to the eleventh harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional U ... Takahashi, Kazue; Denton, Richard; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John; Dai, Lei; Min, Kyungguk; Smith, Charles; MacDowall, Robert; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2014JA020373 multispacecraft observation; plasmasphere; ULF waves; Van Allen Probes |
Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and el ... Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016JA023429 nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave-particle interactions |
An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single s ... Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016JA023536 magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like |
2016 |
We present here the first in situ statistical survey of structured Pc1 pearl pulsations compared with unstructured electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes spacecraft. This data set was compiled from observations spanning 8 September 2012 through 31 August 2015 and comprises over 1630 h of total EMIC wave activity, of which 291 h exhibited pearl structure. Additionally, we have identified 29 wave events demonstrating periodically oscillating wave packets, mostly about the magnetic equator, ... Paulson, K.; Smith, C.; Lessard, M.; Torbert, R.; Kletzing, C.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016JA023160 |
Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results s ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071158 EMIC waves; magnetic storm; outer radiation belt; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultra-low frequency (ULF) waves on October 29, 2013. Oscillations in electron flux were observed at the period of \~450s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from ... Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, John; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071252 drift-resonance; injection; PSD gradient; ULF waves; Van Allen Probes |
Prompt recovery of MeV electron populations in the post-storm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly non-linear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant non-adiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by ... Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016JA023429 nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave particle interactions |
Characteristic energy range of electron scattering due to plasmaspheric hiss We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to th ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016JA023311 electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation |
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013 Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25\textendash26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1\textendash3.9 and magnetic local time (MLT) = 21.0\texten ... Zhang, Jichun; Halford, Alexa; Saikin, Anthony; Huang, Chia-Lin; Spence, Harlan; Larsen, Brian; Reeves, Geoffrey; Millan, Robyn; Smith, Charles; Torbert, Roy; Kurth, William; Kletzing, Craig; Blake, Bernard; Fennel, Joseph; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2016 YEAR: 2016   DOI: 10.1002/2016JA022918 BARREL; EMIC waves; FFT; Geomagnetic storm; relativistic electron precipitation (REP); Van Allen Probes |
The complex nature of storm-time ion dynamics: Transport and local acceleration Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained ... Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016GL070878 |
Hiss or Equatorial Noise? Ambiguities in Analyzing Suprathermal Ion Plasma Wave Resonance Previous studies have shown that low energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined there was a depletion in the 1-10 eV ion population in the post-midnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions between 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves rangin ... Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; ik, Ondrej; Morley, Steven; Breneman, Aaron; Larsen, Brian; Reeves, Geoff; Wygant, John; Hospodarsky, George; Kletzing, Craig; Moldwin, Mark; Katus, Roxanne; Zou, Shasha; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022975 equatorial noise; Low Energy Ions; plasma waves; plasmasphere; Plasmaspheric Hiss; Van Allen Probes |
Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss We test the recently developed nonlinear wave growth theory of plasmaspheric hiss against discrete rising tone elements of hiss emissions observed by the Van Allen Probes. From the phase variation of the waveforms processed by bandpass filters, we calculate the instantaneous frequencies and wave amplitudes. We obtain the theoretical relation between the wave amplitude and frequency sweep rates at the observation point by applying the convective growth rates and dispersion factors to the known relation at the equator. By plot ... Nakamura, Satoko; Omura, Yoshiharu; Summers, Danny; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016GL070333 magnetospheric dynamics; nonlinear wave growth theory; plasma wave; Plasmaspheric Hiss; Van Allen Probes; whistler-mode chorus |
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the presen ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022517 Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes |
Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using L and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Al ... Jordanova, V.; Tu, W.; Chen, Y.; Morley, S.; Panaitescu, A.-D.; Reeves, G.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022470 |
Unraveling the excitation mechanisms of highly oblique lower band chorus waves Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth\textquoterights magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first ... Li, W.; Mourenas, D.; Artemyev, A.; Bortnik, J.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Funsten, H.; Spence, H.; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/grl.v43.1710.1002/2016GL070386 beam instability; lower band chorus; oblique chorus excitation; temperature anisotropy; Van Allen Probes |
We present results of a detailed analysis of two electromagnetic wave events observed in the inner magnetosphere at frequencies of a few kilohertz, which exhibit a quasiperiodic (QP) time modulation of the wave intensity. The events were observed by the Cluster and Van Allen Probes spacecraft and in one event also by the THEMIS E spacecraft. The spacecraft were significantly separated in magnetic local time, demonstrating a huge azimuthal extent of the events. Geomagnetic conditions at the times of the observations were very ... emec, F.; Hospodarsky, G.; Pickett, J.; ik, O.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA022774 |
The distribution of plasmaspheric hiss wave power with respect to plasmapause location In this work, Van Allen Probes data are used to derive terrestrial plasmaspheric hiss wave power distributions organized by (1) distance away from the plasmapause and (2) plasmapause distance from Earth. This approach is in contrast to the traditional organization of hiss wave power by L parameter and geomagnetic activity. Plasmapause-sorting reveals previously unreported and highly repeatable features of the hiss wave power distribution, including a regular spatial distribution of hiss power with respect to the plasmapause, ... Malaspina, David; Jaynes, Allison; e, Cory; Bortnik, Jacob; Thaller, Scott; Ergun, Robert; Kletzing, Craig; Wygant, John; Published by: Geophysical Research Letters Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016GL069982 hiss; plasma waves; plasmasphere; Radiation belts; Van Allen Probes |
Electric and Magnetic Radial Diffusion Coefficients Using the Van Allen Probes Data ULF waves are a common occurrence in the inner magnetosphere and they contribute to particle motion, significantly, at times. We used the magnetic and the electric field data from the EMFISIS and the EFW instruments on board the Van Allen Probes to estimate the ULF wave power in the compressional component of the magnetic field and the azimuthal component of the electric field, respectively. Using L*, Kp, and MLT as parameters, we conclude that the noon sector contains higher ULF Pc-5 wave power compared with the other MLT s ... Ali, Ashar; Malaspina, David; Elkington, Scot; Jaynes, Allison; Chan, Anthony; Wygant, John; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA023002 Electric and Magnetic Components; radial diffusion; RBSP; Van Allen Probes |
Highly energetic electrons in the Earth\textquoterights Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a f ... Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.810.1002/2016JA022775 distribution of chorus wave intensities in the inner magnetosphere; inner magnetosphere; Radiation belts; scale size of chorus wave packets; Van Allen Probes; Wave-particle interaction |
Trapped electrons in Earth\textquoterights outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impac ... Kanekal, S.; Baker, D.; Fennell, J.; Jones, A.; Schiller, Q.; Richardson, I.; Li, X.; Turner, D.; Califf, S.; Claudepierre, S.; Wilson, L.; Jaynes, A.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA022596 electron; energizaiton; IP shock; ultrarelativsti; Van Allen Probes |
Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by ... Yue, Chao; An, Xin; Bortnik, Jacob; Ma, Qianli; Li, Wen; Thorne, Richard; Reeves, Geoffrey; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016GL070084 beta parallel; electron temperature anisotropy; marginally stable state; oblique waves; quasi-parallel waves; Van Allen Probes; whistler mode chorus waves |
The relationship between the plasmapause and outer belt electrons We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. ... Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA023046 Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes |
Direct evidence for EMIC wave scattering of relativistic electrons in space Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, wh ... Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022521 electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5\textendash6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close ... e, M.; Keika, K.; Kletzing, C.; Spence, H.; Smith, C.; MacDowall, R.; Reeves, G.; Larsen, B.; Mitchell, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022549 Dipolarization; inner magnetosphere; ionospheric outflow; Magnetic Fluctuation; O+ Acceleration; substorm; Van Allen Probes |
We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04\textendash06 magnetic local time (MLT)), we observ ... Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Keika, Kunihiro; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin; Kletzing, Craig; Hanzelka, Miroslav; ik, Ondrej; Kurth, William; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.610.1002/2015JA022264 conjugate event; propagation; QP; Ray Tracing; time delay; Van Allen Probes; VLF/ELF |