Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 506 entries in the Bibliography.


Showing entries from 51 through 100


2020

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models

Abstract The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss w ...

Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028403

chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

Published by: Geophysical Research Letters      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ...

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Statistical Study of Chorus Modulations by Background Magnetic Field and Plasma Density

In this study, we use observations of THEMIS and Van Allen Probes to statistically study the modulations of chorus emissions by variations of background magnetic field and plasma density in the ultra low frequency range. The modulation events are identified automatically and divided into three types according to whether the chorus intensity correlates to the variations of the magnetic field only (Type B), plasma density only (Type N), or both (Type NB). For the THEMIS observations, the occurrences of the Types B and N are la ...

Xia, Zhiyang; Chen, Lunjin; Li, Wen;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089344

Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ...

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

Published by: Earth and Planetary Physics      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet

We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic ...

Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089875

Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ...

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere

The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ...

Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John;

Published by: Geophysical Research Letters      Published on: 11/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090027

ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes

Statistical Study on Locally Generated High-Frequency Plasmaspheric Hiss and Its Effect on Suprathermal Electrons: Van Allen Probes Observation and Quasi-linear Simulation

The local generation of high-frequency plasmaspheric hiss has recently been reported by a case study (He et al., 2019, https://doi.org/10.1029/2018GL081578). In this research, we perform statistics of global distributions of the locally generated high-frequency plasmaspheric hiss (LHFPH) for different levels of substorm activity, using 6-year observational data from Van Allen Probes. The statistics find that the LHFPH amplitude presents a strong magnetic local time (MLT) asymmetry and highly depends on substorm activity, and ...

He, Zhaoguo; Yu, Jiang; Chen, Lunjin; Xia, Zhiyang; Wang, Wenrui; Li, Kun; Cui, Jun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028526

Van Allen Probes

Storm Time Plasma Pressure Inferred From Multimission Measurements and Its Validation Using Van Allen Probes Particle Data

The k-nearest-neighbor technique is used to mine a multimission magnetometer database for a subset of data points from time intervals that are similar to the storm state of the magnetosphere for a particular moment in time. These subsets of data are then used to fit an empirical magnetic field model. Performing this for each snapshot in time reconstructs the dynamic evolution of the magnetic and electric current density distributions during storms. However, because weaker storms occur more frequently than stronger storms, th ...

Stephens, G.; Bingham, S.; Sitnov, M.; Gkioulidou, M.; Merkin, V.; Korth, H.; Tsyganenko, N.; Ukhorskiy, A;

Published by: Space Weather      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020SW002583

storms; empirical geomagnetic field; ring current; data mining; eastward current; plasma pressure; Van Allen Probes

Unraveling the Formation Mechanism for the Bursts of Electron Butterfly Distributions: Test Particle and Quasilinear Simulations

Energetic electron dynamics is highly affected by plasma waves through quasilinear and/or nonlinear interactions in the Earth s inner magnetosphere. In this letter, we provide physical explanations for a previously reported intriguing event from the Van Allen Probes observations, where bursts of electron butterfly distributions at tens of keV exhibit remarkable correlations with chorus waves. Both test particle and quasilinear simulations are used to reveal the formation mechanism for the bursts of electron butterfly distrib ...

Gan, L.; Li, W.; Ma, Q.; Artemyev, A.; Albert, J.;

Published by: Geophysical Research Letters      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090749

butterfly distribution; chorus waves; Electron acceleration; Radiation belts; nonlinear interaction; Van Allen Probes

Suprathermal Electron Evolution Under the Competition Between Plasmaspheric Plume Hiss Wave Heating and Collisional Cooling

Suprathermal electrons are a major heat source of ionospheric plasma. How the suprathermal electrons evolve during their bounces inside the plasmasphere is a fundamental question for the magnetosphere-ionosphere coupling. On the basis of Van Allen Probes observations and quasi-linear simulations, we present here the first quantitative study on the evolution of suprathermal electrons under the competition between Landau heating by whistler mode hiss waves and Coulomb collisional cooling by background plasma inside a plasmasph ...

Wang, Zhongshan; Su, Zhenpeng; Liu, Nigang; Dai, Guyue; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 09/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089649

magnetosphere-ionosphere coupling; whistler mode hiss waves; Landau resonance; Coulomb collisions; suprathermal electrons; ring current; Van Allen Probes

Quantifying the Effects of EMIC Wave Scattering and Magnetopause Shadowing in the Outer Electron Radiation Belt by Means of Data Assimilation

In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant μ ranging from 300 to 3,000 MeV G−1. We inspect the innovation vector ...

Cervantes, S.; Shprits, Y; Aseev, N.; Allison, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028208

data assimilation; EMIC waves; magnetopause shadowing; innovation vector; Kalman Filter; radiation belt losses; Van Allen Probes

New Insights From Long-Term Measurements of Inner Belt Protons (10s of MeV) by SAMPEX, POES, Van Allen Probes, and Simulation Results

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission provided long-term measurements of 10s of megaelectron volt (MeV) inner belt (L < 2) protons (1992–2009) as did the Polar-orbiting Operational Environmental Satellite-18 (POES-18, 2005 to present). These long-term measurements at low-Earth orbit (LEO) showed clear solar cycle variations which anticorrelate with sunspot number. However, the magnitude of the variation is much greater than the solar cycle variation of galactic cosmic rays (>GeV) tha ...

Li, Xinlin; Xiang, Zheng; Zhang, Kun; Khoo, Lengying; Zhao, Hong; Baker, Daniel; Temerin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028198

Inner radiation belt; Inner Belt Proton; Solar cycle variation; Cosmic rays; neutron monitor; Low Earth Orbit satellite; Van Allen Probes

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dy ...

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the po ...

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss

Lightning generated whistlers (LGWs) play an important role in precipitating energetic electrons in the Earth s inner radiation belt and beyond. Wave burst data from the Van Allen Probes are used to unambiguously identify LGWs and analyze their properties at L < 4 by extending their frequencies down to ~100 Hz for the first time. The statistical results show that LGWs typically occur at frequencies from 100 Hz to 10 kHz with the major wave power below the equatorial lower hybrid resonance frequency, and their wave ampli ...

Green, A.; Li, W.; Ma, Q.; Shen, X.-C.; Bortnik, J.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089584

lightning generated whistlers; electron precipitation; Inner radiation belt; hiss; VLF transmitter waves; global distribution; Van Allen Probes

The Role of Hiss, Chorus, and EMIC Waves in the Modeling of the Dynamics of the Multi-MeV Radiation Belt Electrons

In this study, we performed a series of long-term and individual storm simulations with and without hiss, chorus, and electromagnetic ion cyclotron (EMIC) waves. We compared simulation results incorporating different wave modes with Van Allen Probes flux observations to illustrate how hiss and chorus waves aid EMIC waves in depleting multi-MeV electrons. We found that EMIC, hiss, and chorus waves are required to reproduce satellite measurements in our simulations. Our results indicate that hiss waves play a dominant role in ...

Drozdov, A; Usanova, M.; Hudson, M.; Allison, H.; Shprits, Y;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028282

EMIC waves; Radiation belts; Whistler waves; VERB code; Fokker-Planck diffusion equation; Van Allen Probes

Can Solar Wind Decompressive Discontinuities Suppress Magnetospheric Electromagnetic Ion Cyclotron Waves Associated With Fresh Proton Injections?

Electromagnetic ion cyclotron (EMIC) waves play an important role in the energy transfer among particles of different energies and species in the magnetosphere, whose drivers have been commonly recognized as solar wind compressions and storm/substorm proton injections. However, how the solar wind decompressions related to frequently occurring discontinuities compete with the proton injections in the evolution of EMIC waves has been rarely investigated. Here we present a complete end-to-end observation by Wind, THEMIS, and Va ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090296

EMIC waves; solar wind discontinuity; storm/substorm injection; wave generation; adiabatic deceleration; inner magnetosphere; Van Allen Probes

Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 t ...

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088798

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes

Origin of Electron Boomerang Stripes: Localized ULF Wave-Particle Interactions

Ultralow frequency (ULF) wave-particle interactions play a significant role in the radiation belt dynamic process, during which drift resonance can accelerate and transport energetic electrons in the outer radiation belt. Observations of wave-electron drift resonance are characterized by quasiperiodic straight or “boomerang-shaped” stripes in the pitch angle spectrogram. Here we present an ULF wave event on 1 December 2015, during which both kinds stripes were observed by Van Allen Probes A and B, respectively. Using the ...

Zhao, X.; Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Yue, Chao; Chen, X.; Liu, Y.; Blake, J.; Claudepierre, S.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087960

boomerang-shaped stripes; ULF waves; drift resonance; time of flight; Van Allen Probes

Electron Diffusion by Coexisting Plasmaspheric Hiss and Chorus Waves: Multisatellite Observations and Simulations

We report a rare event of intense plasmaspheric hiss and chorus waves simultaneously observed at the same L shell but different magnetic local times by Van Allen Probes and Magnetospheric Multiscale. Based on the measured waves and electron distributions, we calculate the bounce-averaged diffusion coefficients and subsequently simulate the temporal evolution of electron distributions. The simulations show that the dynamics of tens to hundreds of keV electrons are jointly controlled by hiss and chorus. The dynamics of MeV ele ...

Yu, J.; Wang, J.; Li, L; Cui, J.; Cao, J.; He, Z.;

Published by: Geophysical Research Letters      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088753

electron diffusion; Plasmaspheric Hiss; chorus waves; Van Allen Probes; MMS

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to th ...

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double- ...

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves

Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing e ...

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027798

electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes

Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves

Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing e ...

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027798

electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes

Conjugate Observations of Quasiperiodic Emissions by the Van Allen Probes Spacecraft and Ground-Based Station Kannuslehto

Whistler mode waves observed in the Earth s inner magnetosphere at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity are called quasiperiodic (QP) emissions. Conjugate measurements of QP events at several different locations can be used to estimate their spatial extent and spatiotemporal variability. Results obtained using conjugate QP measurements provided by the ground-based station Kannuslehto (L≈5.5) and the Van Allen Probes spacecraft (L shells between about ...

Bezděková, B.; Němec, F.; Manninen, J.; Hospodarsky, G.; Santolik, O.; Kurth, W.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027793

Van Allen Probes

Global Model of Whistler Mode Chorus in the Near-Equatorial Region (|λm|<  18°)

We extend our database of whistler mode chorus, based on data from seven satellites, by including ∼3 years of data from Radiation Belt Storm Probes (RBSP)-A and RBSP-B and an additional ∼6 years of data from Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A, THEMIS-D, and THEMIS-E. The new database allows us to probe the near-equatorial region in detail, revealing new features. In the equatorial source region, |λm|<6°, strong wave power is most extensive in the 0.1–0.4fce bands in the r ...

Meredith, Nigel; Horne, Richard; Shen, Xiao-Chen; Li, Wen; Bortnik, Jacob;

Published by: Geophysical Research Letters      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087311

whistler mode chorus; wave-particle interactions; Radiation belts; Van Allen Probes

Simultaneous Observations of Localized and Global Drift Resonance

In this study, we present Van Allen Probe observations showing that seed (hundreds of keV) and core ( 1 MeV) electrons can resonate with ultra-low-frequency (ULF) wave modes with distinctive m values simultaneously. An unusual electron energy spectrogram with double-banded resonant structure was recorded by energetic particle, composition, and thermal plasma (ECT)-magnetic electron ion spectrometer (MagEIS) and, meanwhile, boomerang stripes in pitch angle spectrogram appeared at the lower energy band. A localized drift reson ...

Hao, Y.; Zhao, X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Geophysical Research Letters      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088019

drift resonance; ULF waves; Radiation Belt Dynamics; boomerang stripes; azimuthal wave number; multiple resonances; Van Allen Probes

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Abstract Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower har ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

Published by: Geophysical Research Letters      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower harmonic ban ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

Published by: Geophysical Research Letters      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitud ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

Published by: Geophysical Research Letters      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

Published by: Geophysical Research Letters      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

Global Simulation of Electron Cyclotron Harmonic Wave Instability in a Storm-Time Magnetosphere

Abstract Electron cyclotron harmonic (ECH) waves are electrostatic emissions between the ECHs and play a dominant role for precipitating energetic electrons in the magnetotail. Statistically, the ECH wave intensity is stronger at nightside and dawnside than at dayside and duskside. In this study, we, for the first time, simulate the global ECH wave evolution during a geomagnetic storm event using Ring current Atmosphere interactions Model with Self-Consistent Magnetic field (RAM-SCB) combined with a linear growth rate solver ...

Liu, Xu; Chen, Lunjin; Engel, Miles; Jordanova, Vania;

Published by: Geophysical Research Letters      Published on: 02/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019GL086368

ECH wave global instability; RAM-SCB model; Geomagnetic storm; Van Allen Probes

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on: 01/2020

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on:

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at diffe ...

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

2019

Effects of Solar Wind Plasma Flow and Interplanetary Magnetic Field on the Spatial Structure of Earth\textquoterights Radiation Belts

Based on the statistical data measured by Van Allen Probes from 2012 to 2016, we analyzed the effects of solar wind plasma flow and interplanetary magnetic field (IMF) on the spatial distribution of Earth\textquoterights radiation belt electrons (>100 keV). The statistical results indicate that the increases in solar wind plasma density and flow speed can exert different effects on the spatial structure of the radiation belts. The high solar wind plasma density (>6 cm-3)/flow pressure (>2.5 nPa) and a large southward IMF (Bz ...

Li, L.Y.; Yang, S.S.; Cao, J.B.; Yu, J.; Luo, X.Y.; Blake, J.B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA027284

Changes in The Spatial Structure of Earth\textquoterights Radiation Belts; Increase in Solar Wind Plasma Density; Increase in Solar Wind Plasma Flow Speed; Northward Interplanetary Magnetic Field; Southward interplanetary magnetic field; Van Allen Probes

Global Survey and Empirical Model of Fast Magnetosonic Waves Over Their Full Frequency Range in Earth\textquoterights Inner Magnetosphere

We investigate the global distribution and provide empirical models of fast magnetosonic waves using the combined observations by the magnetometer and waveform receiver on board Van Allen Probes. The magnetometer measurements of magnetosonic waves indicate a significant wave power within the frequency range from the helium gyrofrequency to 20 Hz at L >= 4 in the afternoon sector, both inside and outside the plasmapause. The waveform receiver measurements indicate a significant wave power from 20 Hz to the lower hybrid resona ...

Ma, Q.; Li, W.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA027407

Empirical Fitting; Global Survey; magnetosonic waves; Van Allen Probes; Van Allen Probes observation

Particle Dynamics in the Earth\textquoterights Radiation Belts: Review of Current Research and Open Questions

The past decade transformed our observational understanding of energetic particle processes in near-Earth space. An unprecedented suite of observational systems were in operation including the Van Allen Probes, Arase, MMS, THEMIS, Cluster, GPS, GOES, and LANL-GEO magnetospheric missions. They were supported by conjugate low-altitude measurements on spacecraft, balloons, and ground-based arrays. Together these significantly improved our ability to determine and quantify the mechanisms that control the build-up and subsequent ...

Ripoll, Jean-Francois; Claudepierre, Seth; Ukhorskiy, Sasha; Colpitts, Chris; Li, Xinlin; Fennell, Joe; Crabtree, Chris;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2019

YEAR: 2019     DOI: 10.1029/2019JA026735

inner magnetosphere; laboratory plasma experiments; Particle acceleration; particle loss; Radiation belts; Van Allen Probes

Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES-15 Measurements: 2012-2018

Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027331

energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes

Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves

Electromagnetic ion cyclotron (EMIC) waves are known to typically cause electron losses into Earth\textquoterights upper atmosphere at >~1 MeV, while the minimum energy of electrons subject to efficient EMIC-driven precipitation loss is unresolved. This letter reports electron precipitation from subrelativistic energies of ~250 keV up to ~1 MeV observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, while two Polar Operational Environmental Satellites (POES) ...

Capannolo, L.; Li, W.; Ma, Q.; Chen, L.; Shen, X.-C.; Spence, H.; Sample, J.; Johnson, A.; Shumko, M.; Klumpar, D.; Redmon, R.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084202

electron precipitation; EMIC waves; FIREBIRD-II; quasi linear theory; Radiation belts; Van Allen Probes; wave particle interactions



  1      2      3      4      5      6