Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 148 entries in the Bibliography.
Showing entries from 51 through 100
2019 |
Effect of Low-Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly-like electron pitch angle distributions and the emission of low-harmonic (LH) fast magnetosonic (MS) waves inside the high-density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly-like distributions for both events (near-equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) elec ... Yu, J.; Li, L; Cui, J.; Cao, J.; Wang, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2018JA026328 bounce resonance; Electron acceleration; Landau resonance; magnetosonic waves; transit-time scattering; Van Allen Probes |
We report multi-spacecraft observations of ULF waves from Van Allen Probes (RBSP), Magnetospheric Multiscale (MMS), Time History of Events and Macroscale Interactions during Substorm (THEMIS), and Geostationary Operational Environmental Satellites (GOES). On August 31, 2015, global-scale poloidal waves were observed in data from RBSP-B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time (MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP- ... Wei, Chao; Dai, Lei; Duan, Suping; Wang, Chi; Wang, YuXian; Published by: Earth and Planetary Physics Published on: 05/2019 YEAR: 2019   DOI: 10.26464/epp2019021 bump-on-tail; inward gradient; polarization rotation; poloidal waves; Van Allen Probes |
We report multi-spacecraft observations of ULF waves from Van Allen Probes (RBSP), Magnetospheric Multiscale (MMS), Time History of Events and Macroscale Interactions during Substorm (THEMIS), and Geostationary Operational Environmental Satellites (GOES). On August 31, 2015, global-scale poloidal waves were observed in data from RBSP-B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time (MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP- ... Wei, Chao; Dai, Lei; Duan, Suping; Wang, Chi; Wang, YuXian; Published by: Earth and Planetary Physics Published on: 05/2019 YEAR: 2019   DOI: 10.26464/epp2019021 bump-on-tail; inward gradient; polarization rotation; poloidal waves; Van Allen Probes |
Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler-mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high- and low-density conditions. The enhanced proton thermal pressure distorted the ... Dai, Guyue; Su, Zhenpeng; Liu, Nigang; Wang, Bin; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL082944 Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; substorm injection; Van Allen Probes; Wave-particle interaction |
Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler-mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high- and low-density conditions. The enhanced proton thermal pressure distorted the ... Dai, Guyue; Su, Zhenpeng; Liu, Nigang; Wang, Bin; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL082944 Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; substorm injection; Van Allen Probes; Wave-particle interaction |
Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler-mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high- and low-density conditions. The enhanced proton thermal pressure distorted the ... Dai, Guyue; Su, Zhenpeng; Liu, Nigang; Wang, Bin; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL082944 Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; substorm injection; Van Allen Probes; Wave-particle interaction |
Quasi Thermal Noise Spectroscopy for Van Allen Probes Quasi thermal fluctuations in the Langmuir/upper-hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation in ... Yoon, Peter; Hwang, Junga; Kim, Hyangpyo; Seough, Jungjoon; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019JA026460 (n+1/2)fce; antenna geometry; Quasi-thermal; Radiation belt; Upper hybrid; Van Allen Probes |
Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The ... Wang, Zihan; Zou, Shasha; Shepherd, Simon; Liang, Jun; Gjerloev, Jesper; Ruohoniemi, Michael; Kunduri, Bharat; Wygant, John; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2019JA026535 Field-Aligned Current; Particle Injection; Sub-auroral Polarization Stream; Van Allen Probes |
Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To in ... Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA026184 alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes |
Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21\textendash29 June 2015 was investigated using high-resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more fr ... Wang, Hui; He, Yangfan; ühr, Hermann; Kistler, Lynn; Saikin, Anthony; Lund, Eric; Ma, Shuying; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026299 |
2018 |
With observations of Van Allen Probe A, in this letter we display a typical event where banded whistler waves shifted up their frequencies with frequency bands broadening as a response to the enhancement of solar wind dynamic pressure. Meanwhile, the anisotropy of electrons with energies about several tens of keV was observed to increase. Through the comparison of the calculated wave growth rates and observed wave spectral intensity, we suggest that those banded whistler waves observed with frequencies shifted up and frequen ... Yu, Xiongdong; Yuan, Zhigang; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yao, Fei; Funsten, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: Mar-08-2020 YEAR: 2018   DOI: 10.1029/2018GL078849 Banded whistler-mode waves; Frequency properties; inner magnetosphere; solar wind dynamic pressure; Van Allen Probes |
Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ... Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui; Published by: Geophysical Research Letters Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018GL080635 aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes |
Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ... Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui; Published by: Geophysical Research Letters Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018GL080635 aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes |
In this letter, we present unique conjugated satellite observations of MeV relativistic electron precipitation caused by electromagnetic ion cyclotron (EMIC) waves. On the outer boundary of the plasmasphere, the Van Allen probe observed EMIC waves. At ionospheric altitudes, the NOAA 16 satellite at the footprint of Van Allen probe simultaneously detected obvious flux enhancements for precipitating >MeV radiation belt electrons, but not for precipitating Yuan, Zhigang; Liu, Kun; Yu, Xiongdong; Yao, Fei; Huang, Shiyong; Wang, Dedong; Ouyang, Zhihai; Published by: Geophysical Research Letters Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018GL080481 Chorus; EMIC waves; Particle precipitation; Radiation belt; ring current; Van Allen Probes; Wave-particle interaction |
High-frequency thermal fluctuations and instabilities in the radiation belt environment This paper overviews the electrostatic and electromagnetic theories of spontaneous emission in magnetized plasma as they relate to measured electric and magnetic field fluctuations in quiet time radiation belt and ring current region. The pervasively detected high-frequency fluctuations in the upper-hybrid frequency range as well as the background low-frequency range spectral profile in the whistler mode range are explained within the context of the spontaneous emission theory. The quasilinear calculation of loss-cone instab ... Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA025643 loss cone instability; Radiation belt; spontaneous emission; upper hybrid wave; Van Allen Probes |
In Earth\textquoterights inner magnetosphere, electromagnetic waves in the ultra-low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift-resonance theory, linearization is applied under the assumption of weak wave-particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, ... Li, Li; Zhou, Xu-Zhi; Omura, Yoshiharu; Wang, Zi-Han; Zong, Qiu-Gang; Liu, Ying; Hao, Yi-Xin; Fu, Sui-Yan; Kivelson, Margaret; Rankin, Robert; Claudepierre, Seth; Wygant, John; Published by: Geophysical Research Letters Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018GL079038 drift resonance; nonlinear process; Particle acceleration; Radiation belts; ULF waves; Van Allen Probes; wave-particle interactions |
The composition of plasma inside geostationary orbit based on Van Allen Probes observations The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and ... Yue, Chao; Bortnik, Jacob; Li, Wen; Ma, Qianli; Gkioulidou, Matina; Reeves, Geoffrey; Wang, Chih-Ping; Thorne, Richard; T. Y. Lui, Anthony; Gerrard, Andrew; Spence, Harlan; Mitchell, Donald; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018JA025344 ion composition; plasma pressure; Plasmapause; Van Allen Probes |
Magnetosonic waves play a potentially important role in the complex evolution of the radiation belt electrons. These waves typically appear as discrete emission lines along the proton gyrofrequency harmonics, consistent with the prediction of the local Bernstein mode instability of hot proton ring distributions. Magnetosonic waves are nearly dispersionless particularly at low harmonics and therefore have the roughly unchanged frequency-time structures during the propagation. On the basis of Van Allen Probes observations, we ... Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL079232 Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; rising/falling frequency; Van Allen Probes; wave propagation |
Magnetosonic waves play a potentially important role in the complex evolution of the radiation belt electrons. These waves typically appear as discrete emission lines along the proton gyrofrequency harmonics, consistent with the prediction of the local Bernstein mode instability of hot proton ring distributions. Magnetosonic waves are nearly dispersionless particularly at low harmonics and therefore have the roughly unchanged frequency-time structures during the propagation. On the basis of Van Allen Probes observations, we ... Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL079232 Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; rising/falling frequency; Van Allen Probes; wave propagation |
Observation of Oblique Lower Band Chorus Generated by Nonlinear Three-Wave Interaction Oblique whistler mode waves have been suggested to play an important role in radiation belt electron dynamics. Recently, Fu et al. [2017] proposed that highly oblique lower band whistler waves could be generated by nonlinear three-wave resonance. Here we present the first observational evidence of such process, using Van Allen Probes data, where an oblique lower band chorus wave is generated by two quasi-parallel waves through nonlinear three-wave interaction. The wave resonance condition is satisfied even in the presence of ... Teng, S.; Zhao, J.; Tao, X.; Wang, S.; Reeves, G.; Published by: Geophysical Research Letters Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018GL078765 Oblique lower band chorus; radiation belt physics; Van Allen Probes; wave particle interaction; wave-wave interaction |
Ultra-low-frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfv\ en waves detected near the magnetic equator at L\~5.7. Results obtained from simulations reproduce important features of the observations, including a substantial e ... Wang, C.; Rankin, R.; Wang, Y.; Zong, Q.-G.; Zhou, X.; Takahashi, K.; Marchand, R.; Degeling, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2017JA025123 ULF wave; drift-resonant; test particle simulation; Van Allen Probes |
Ultra-low-frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfv\ en waves detected near the magnetic equator at L\~5.7. Results obtained from simulations reproduce important features of the observations, including a substantial e ... Wang, C.; Rankin, R.; Wang, Y.; Zong, Q.-G.; Zhou, X.; Takahashi, K.; Marchand, R.; Degeling, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2017JA025123 ULF wave; drift-resonant; test particle simulation; Van Allen Probes |
A typical case of electromagnetic ion cyclotron (EMIC) emissions with both He+ band and O+ band waves was observed by Van Allen Probe A on 14 July 2014. These emissions occurred in the morning sector on the equator inside the plasmasphere, in which region O+ band EMIC waves prefer to appear. Through property analysis of these emissions, it is found that the He+ band EMIC waves are linearly polarized and propagating quasi-parallelly along the background magnetic field, while the O+ band ones are of linear and left-hand polari ... Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Yao, Fei; Wang, Dedong; Funsten, Herbert; Wygant, John; Published by: Geophysical Research Letters Published on: 02/2018 YEAR: 2018   DOI: 10.1002/grl.v45.310.1002/2018GL077109 linear wave growth; O+ band EMIC waves; ring distributions; Van Allen Probes |
Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density ex ... Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017JA024867 Fast Magnetosonic Waves; inner magnetosphere; observation-simulation comparison; Van Allen Probes; wave excitation |
Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes Su, Zhenpeng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017GL076754 electron instability; ELF hiss; generation mechanism; pitch angle scattering; precipitation loss; Radiation belt; Van Allen Probes |
Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes Su, Zhenpeng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017GL076754 electron instability; ELF hiss; generation mechanism; pitch angle scattering; precipitation loss; Radiation belt; Van Allen Probes |
Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magn ... Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017GL076382 magnetosonic waves; Radiation belt; ring current; solar wind dynamic pressure; Van Allen Probes; Wave-particle interaction |
Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magn ... Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017GL076382 magnetosonic waves; Radiation belt; ring current; solar wind dynamic pressure; Van Allen Probes; Wave-particle interaction |
2017 |
Analysis of the Duration of Rising Tone Chorus Elements The duration of chorus elements is an important parameter to understand chorus excitation and to quantify the effects of nonlinear wave-particle interactions on energetic electron dynamics. In this work, we analyze the duration of rising tone chorus elements statistically using Van Allen Probes data. We present the distribution of chorus element duration (τ) as a function of magnetic local time (MLT) and the geomagnetic activity level characterized by auroral electrojet (AE) index. We show that the typical value of τ for n ... Teng, S.; Tao, X.; Xie, Y.; Zonca, F.; Chen, L.; Fang, W.; Wang, S.; Published by: Geophysical Research Letters Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017GL075824 chorus element duration; DAWN; frequency chirping rate; Van Allen Probes |
Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its d ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Reeves, G.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024470 Chorus; interplanetary shock; Plasmaspheric Hiss; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction |
Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its d ... Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Reeves, G.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024470 Chorus; interplanetary shock; Plasmaspheric Hiss; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction |
A neural network model of three-dimensional dynamic electron density in the inner magnetosphere A plasma density model of the inner magnetosphere is important for a variety of applications including the study of wave-particle interactions, and wave excitation and propagation. Previous empirical models have been developed under many limiting assumptions and do not resolve short-term variations, which are especially important during storms. We present a three-dimensional dynamic electron density (DEN3D) model developed using a feedforward neural network with electron densities obtained from four satellite missions. The D ... Chu, X.; Bortnik, J.; Li, W.; Ma, Q.; Denton, R.; Yue, C.; Angelopoulos, V.; Thorne, R.; Darrouzet, F.; Ozhogin, P.; Kletzing, C.; Wang, Y.; Menietti, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024464 |
Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from ... Aseev, N.; Shprits, Y; Drozdov, A; Kellerman, A.; Usanova, M.; Wang, D.; Zhelavskaya, I.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024485 electron loss; EMIC waves; Radiation belts; ultrarelativistic electrons; Van Allen Probes; wave-particle interactions |
We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event ar ... Ren, Jie; Zong, Q.; Miyoshi, Y.; Zhou, X.; Wang, Y.; Rankin, R.; Yue, C.; Spence, H.; Funsten, H.; Wygant, J.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024316 Cold plasmaspheric electrons; drift-bounce resonance; Plasma instability; Plasmaspheric boundary layer; Substorm-injected protons; ULF waves; Van Allen Probes |
Rapid loss of radiation belt relativistic electrons by EMIC waves How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth\textquoterights outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile ... Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024169 electron loss; EMIC waves; pitch angle scattering; radial diffusion; Radiation belts; Van Allen Probes; Wave-particle interaction |
Rapid loss of radiation belt relativistic electrons by EMIC waves How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth\textquoterights outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile ... Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024169 electron loss; EMIC waves; pitch angle scattering; radial diffusion; Radiation belts; Van Allen Probes; Wave-particle interaction |
Direct observation of generation and propagation of magnetosonic waves following substorm injection Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magneto ... Su, Zhenpeng; Wang, Geng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2017   DOI: 10.1002/2017GL074362 Bernstein mode instability; magnetosonic waves; Radiation belt; rising tone; substorm injection; Van Allen Probes; Wave-particle interaction |
Direct observation of generation and propagation of magnetosonic waves following substorm injection Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magneto ... Su, Zhenpeng; Wang, Geng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2017   DOI: 10.1002/2017GL074362 Bernstein mode instability; magnetosonic waves; Radiation belt; rising tone; substorm injection; Van Allen Probes; Wave-particle interaction |
Direct observation of generation and propagation of magnetosonic waves following substorm injection Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magneto ... Su, Zhenpeng; Wang, Geng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2017   DOI: 10.1002/2017GL074362 Bernstein mode instability; magnetosonic waves; Radiation belt; rising tone; substorm injection; Van Allen Probes; Wave-particle interaction |
EMIC waves covering wide L shells: MMS and Van Allen Probes observations During 04:45:00\textendash08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6\textendash9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial ... Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2017 YEAR: 2017   DOI: 10.1002/2017JA023982 EMIC waves; MMS; solar wind dynamic pressure; Van Allen Probes |
In situ observations of magnetosonic waves modulated by background plasma density We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with \textquoteleftring\textquoteright distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the bac ... Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong; Wang, Dedong; Funsten, Herbert; Published by: Geophysical Research Letters Published on: 07/2017 YEAR: 2017   DOI: 10.1002/2017GL074681 \textquoterightring\textquoteright distributions; local linear growth rates; magnetosonic waves; Ring current ions; Van Allen Probes |
Roles of hot electrons in generating upper-hybrid waves in the earth\textquoterights radiation belt Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth\textquoterights radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such flu ... Hwang, J.; Shin, D.; Yoon, P.; Kurth, W.; Larsen, B.; Reeves, G.; Lee, D; Published by: Physics of Plasmas Published on: 06/2017 YEAR: 2017   DOI: 10.1063/1.4984249 Hot carriers; Magnetized plasmas; Radiation belts; Singing; Van Allen Probes; Whistler waves |
Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to \~1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT \~9\textendash14) midlatitude (|MLAT|>15\textdegree) region. An oscillating tone can behave either regularly or irregularly and can even transform int ... Gao, Zhonglei; Su, Zhenpeng; Chen, Lunjin; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 06/2017 YEAR: 2017   DOI: 10.1002/2017GL073420 Chorus; falling tone; nonlinear generation; oscillating tone; rising tone; Van Allen Probes |
Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to \~1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT \~9\textendash14) midlatitude (|MLAT|>15\textdegree) region. An oscillating tone can behave either regularly or irregularly and can even transform int ... Gao, Zhonglei; Su, Zhenpeng; Chen, Lunjin; Zheng, Huinan; Wang, Yuming; Wang, Shui; Published by: Geophysical Research Letters Published on: 06/2017 YEAR: 2017   DOI: 10.1002/2017GL073420 Chorus; falling tone; nonlinear generation; oscillating tone; rising tone; Van Allen Probes |
Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, ... Tang, C.; Wang, Y.; Ni, B.; Zhang, J.-C.; Reeves, G.; Su, Z.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2017 YEAR: 2017   DOI: 10.1002/2017JA023905 relativistic electrons; Substorm Injections; the outer radiation belt; the seed population; Van Allen Probes |
In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globall ... Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Kim, H.; Choi, C.; Lee, J.; Hwang, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2017 YEAR: 2017   DOI: 10.1002/2016JA023827 |
We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the ... Wang, Chih-Ping; Thorne, Richard; Liu, Terry; Hartinger, Michael; Nagai, Tsugunobu; Angelopoulos, Vassilis; Wygant, John; Breneman, Aaron; Kletzing, Craig; Reeves, Geoffrey; Claudepierre, Seth; Spence, Harlan; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2017 YEAR: 2017   DOI: 10.1002/2016JA023610 IMF discontinuity; inner magnetosphere; Kelvin-Helmholtz vortices; magnetosheath; Pc5 waves; plasma sheet; Van Allen Probes |
Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth\textquoterights plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles ( ... Yu, J.; Li, L; Cao, J.; Chen, L.; Wang, J.; Yang, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2017 YEAR: 2017   DOI: 10.1002/2016JA023372 hiss amplitude model; hiss wave amplitude; Plasmaspheric Hiss; propagation angle model of hiss waves; substorm dependence; Van Allen Probes; wave normal angle |
Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang; Published by: Advances in Space Research Published on: 03/2017 YEAR: 2017   DOI: 10.1016/j.asr.2016.12.035 |
Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly dist ... Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Published by: Geophysical Research Letters Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2017GL073116 butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction |