Bibliography



Found 787 entries in the Bibliography.


Showing entries from 51 through 100


2020

Electron Diffusion by Coexisting Plasmaspheric Hiss and Chorus Waves: Multisatellite Observations and Simulations

We report a rare event of intense plasmaspheric hiss and chorus waves simultaneously observed at the same L shell but different magnetic local times by Van Allen Probes and Magnetospheric Multiscale. Based on the measured waves and electron distributions, we calculate the bounce-averaged diffusion coefficients and subsequently simulate the temporal evolution of electron distributions. The simulations show that the dynamics of tens to hundreds of keV electrons are jointly controlled by hiss and chorus. The dynamics of MeV ele ...

Yu, J.; Wang, J.; . Y. Li, L; Cui, J.; Cao, J.; He, Z.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088753

electron diffusion; Plasmaspheric Hiss; chorus waves; Van Allen Probes; MMS

Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements

The flux of energetic electrons in the outer radiation belt shows a high variability. The interactions of electrons with very low frequency (VLF) chorus waves play a significant role in controlling the flux variation of these particles. Quantifying the effects of these interactions is crucially important for accurately modeling the global dynamics of the outer radiation belt and to provide a comprehensive description of electron flux variations over a wide energy range (from the source population of 30 keV electrons up to th ...

Aryan, Homayon; Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Balikhin, Michael; Boynton, Richard; Bortnik, Jacob;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028018

electron lifetimes; Van Allen radiation belts; chorus waves; pitch angle diffusion coefficients; Van Allen Probes; Cluster

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double- ...

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; . Y. Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

Calculation of the Atomic Oxygen Fluence on the Van Allen Probes

The Van Allen Probes Mission consists of two identical spacecraft flying in highly elliptical orbits, with perigee altitudes originally near 600 km. During the low-altitude periods of the orbits, the spacecrafts are immersed in a region of high-density atomic oxygen. Atomic oxygen is known to change and degrade the properties of spacecraft surfaces (Banks et al., 2004), such as those of the Van Allen Probes Electric Field and Waves (EFW) instrument. The consistency of the sensor surfaces in EFW is important because the me ...

Schumm, G.; Bonnell, J.; Wygant, J.; Mozer, F.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027944

Van Allen Probes; atomic oxygen; Langmuir probes; DAG

Electron-Driven Magnetic Dip Embedded Within the Proton-Driven Magnetic Dip and the Related Echoes of Butterfly Distribution of Relativistic Electrons

In this study, a magnetic dip event in which a small-scale magnetic dip is embedded within a large-scale magnetic dip is analyzed based on the observations of the Van Allen Probes. The small-scale dip is contributed by a sharp electron injection at the energy range of 1 to 10 keV, but the large-scale dip is contributed by a smooth proton injection at the energy range higher than 10 keV. The formation of dip caused by the suprathermal electrons is supported by the self-consistent magnetic model. Moreover, the echoes of bu ...

Zhu, Hui; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088983

magnetic dips; echoes of butterfly distributions; ring current-radiation belt coupling; Van Allen Probes

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensit ...

Wang, JingZhi; Zhu, Qi; Gu, Xudong; Fu, Song; Guo, JianGuang; Zhang, Xiaoxin; Yi, Juan; Guo, YingJie; Ni, Binbin; Xiang, Zheng;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020034

hiss; Van Allen Probes; global model

Experimental Determination of the Conditions Associated With “Zebra Stripe” Pattern Generation in the Earth s Inner Radiation Belt and Slot Region

The “zebra stripes” are peaks and valleys commonly present in the spectrograms of energetic particles trapped in the Earth s inner belt and slot region. Several theories have been proposed over the years to explain their generation, structure, and evolution. Yet, the plausibility of various theories has not been tested due to a historical lack of ground truth, including in situ electric field measurements. In this work, we leverage the new visibility offered by the database of Van Allen Probes electric drift measurements ...

Lejosne, Solène; Mozer, Forrest;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027889

zebra stripes; superposed epoch analysis; prompt penetration electric fields; Inner radiation belt; substorm; Van Allen Probes

Defining Radiation Belt Enhancement Events Based on Probability Distributions

We present a methodology to define moderate, strong, and intense space weather events based on probability distributions. We have illustrated this methodology using a long-duration, uniform data set of 1.8–3.5 MeV electron fluxes from multiple LANL geosynchronous satellite instruments, but a strength of this methodology is that it can be applied uniformly to heterogeneous data sets. It allows quantitative comparison of data sets with different energies, units, orbits, and so forth. The methodology identifies a range of ti ...

Reeves, Geoffrey; Vandegriff, Elizabeth; Niehof, Jonathan; Morley, Steven; Cunningham, Gregory; Henderson, Michael; Larsen, Brian;

YEAR: 2020     DOI: https://doi.org/10.1029/2020SW002528

Radiation belts; methods; geosynchronous; energetic particles; hazards; Solar Cycle; Van Allen Probes

Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves

Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing e ...

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027798

electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes

Conjugate Observations of Quasiperiodic Emissions by the Van Allen Probes Spacecraft and Ground-Based Station Kannuslehto

Whistler mode waves observed in the Earth s inner magnetosphere at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity are called quasiperiodic (QP) emissions. Conjugate measurements of QP events at several different locations can be used to estimate their spatial extent and spatiotemporal variability. Results obtained using conjugate QP measurements provided by the ground-based station Kannuslehto (L≈5.5) and the Van Allen Probes spacecraft (L shells between about ...

Bezděková, B.; Němec, F.; Manninen, J.; Hospodarsky, G.; Santolik, O.; Kurth, W.; Hartley, D.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027793

Van Allen Probes

Solar Energetic Proton Access to the Near-Equatorial Inner Magnetosphere

In this study we examine the ability of protons of solar origin to access the near-equatorial inner magnetosphere. Here we examine four distinct solar proton events from 20–200 MeV, concurrent with both quiet time and storm time conditions using proton data from the ACE satellite in the solar wind upstream of Earth and data from the Relativistic Electron Proton Telescope (REPT) instrument aboard Van Allen Probes. We examine the direct flux correspondence between interplanetary space and the inner magnetosphere. Small subs ...

Filwett, Rachael; Jaynes, Allison; Baker, Daniel; Kanekal, Shrikanth; Kress, Brian; Blake, Bern;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027584

Van Allen Probes

Global Model of Whistler Mode Chorus in the Near-Equatorial Region (|λm|<  18°)

We extend our database of whistler mode chorus, based on data from seven satellites, by including ∼3 years of data from Radiation Belt Storm Probes (RBSP)-A and RBSP-B and an additional ∼6 years of data from Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A, THEMIS-D, and THEMIS-E. The new database allows us to probe the near-equatorial region in detail, revealing new features. In the equatorial source region, |λm|<6°, strong wave power is most extensive in the 0.1–0.4fce bands in the r ...

Meredith, Nigel; Horne, Richard; Shen, Xiao-Chen; Li, Wen; Bortnik, Jacob;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087311

whistler mode chorus; wave-particle interactions; Radiation belts; Van Allen Probes

Lifetimes of Relativistic Electrons as Determined From Plasmaspheric Hiss Scattering Rates Statistics: Effects of ωpe/Ωce and Wave Frequency Dependence on Geomagnetic Activity

Whistler-mode hiss waves generally determine MeV electron lifetimes inside the plasmasphere. We use Van Allen Probes measurements to provide the first comprehensive statistical survey of plasmaspheric hiss-driven quasi-linear pitch-angle diffusion rates and lifetimes of MeV electrons as a function of L*, local time, and AE index, taking into account hiss power, electron plasma frequency to gyrofrequency ratio ωpe/Ωce, hiss frequency at peak power ωm, and cross correlations of these parameters. We find that during geomagne ...

Agapitov, O.; Mourenas, D.; Artemyev, A.; Claudepierre, S.; Hospodarsky, G.; Bonnell, J.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088052

electron lifetimes; plasmasphere; hiss waves; wave-particle interactions; Van Allen Probes

Simultaneous Observations of Localized and Global Drift Resonance

In this study, we present Van Allen Probe observations showing that seed (hundreds of keV) and core ( 1 MeV) electrons can resonate with ultra-low-frequency (ULF) wave modes with distinctive m values simultaneously. An unusual electron energy spectrogram with double-banded resonant structure was recorded by energetic particle, composition, and thermal plasma (ECT)-magnetic electron ion spectrometer (MagEIS) and, meanwhile, boomerang stripes in pitch angle spectrogram appeared at the lower energy band. A localized drift reson ...

Hao, Y.; Zhao, X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; . Y. Fu, S; Blake, J.; Reeves, G.; Claudepierre, S.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088019

drift resonance; ULF waves; Radiation Belt Dynamics; boomerang stripes; azimuthal wave number; multiple resonances; Van Allen Probes

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmid ...

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

Simultaneous Observations of Electromagnetic Ion Cyclotron (EMIC) Waves and Pitch Angle Scattering During a Van Allen Probes Conjunction

Abstract On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the ...

Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.;

YEAR: 2020     DOI: 10.1029/2019JA027424

EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering

Raytracing Study of Source Regions of Whistler Mode Wave Power Distribution Relative to the Plasmapause

Abstract A comprehensive numerical raytracing study of whistler mode wave power with the inclusion of finite background electron and ion temperature is performed in order to investigate wave power distribution in relation to the plasmapause. Both Landau damping and linear growth of whistler mode waves are taken into account using a bi-Maxwellian hot electron distribution as well as an isotropic hot electron distribution. Isotropic and bi-Maxwellian distributions yield similar results of statistical spatial wave power for fre ...

Maxworth, A.; Gołkowski, M.; Malaspina, D.; Jaynes, A.;

YEAR: 2020     DOI: 10.1029/2019JA027154

hiss; plasmasphere; Warm Plasma; Raytracing; Magnetosphere; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

Abstract The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not dire ...

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

YEAR: 2020     DOI: 10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

The Dynamics of the Inner Boundary of the Outer Radiation Belt During Geomagnetic Storms

Abstract We investigate the shapes of the inner boundary of the outer radiation belt during different geomagnetic storm phases using energetic electron observations from Van Allen Probes. The case of two consecutive but isolated storms in April 2016 shows that (a) the inner boundary, as a function of L shell and energy, exhibits a “V-shaped” form with the energetic electrons showing a kappa-like energy spectrum (electron flux steeply falling with increasing energies), whereas it is in a “S-shaped” form as the energet ...

Shi, Xiaofei; Ren, Jie; Zong, Q.;

YEAR: 2020     DOI: 10.1029/2019JA027309

Van Allen Probes

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Abstract Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower har ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: 10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Quantifying the Effect of Plasmaspheric Hiss on the Electron Loss from the Slot Region

Abstract We present global statistical models of both wave amplitude and wave normal angle (WNA) of plasmaspheric hiss using Van Allen Probe-A observations. They utilize the time history of solar wind parameters, i.e., interplanetary magnetic field BZ and solar wind speed, and the AE index for each measurement of hiss waves as inputs. The solar wind parameter-based model generally results in higher performance than using only the AE index as an input. Both observations and model results reveal a clear dependence of hiss wave ...

Kim, Kyung-Chan; Shprits, Yuri; Wang, Dedong;

YEAR: 2020     DOI: 10.1029/2019JA027555

Plasmaspheric Hiss; Van Allen Probes; Electron slot region; Statistical modeling; Diffusion simulation; Wave-particle interaction

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Simultaneous Observations of Electromagnetic Ion Cyclotron (EMIC) Waves and Pitch Angle Scattering During a Van Allen Probes Conjunction

On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the plasmapau ...

Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027424

EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering

Raytracing Study of Source Regions of Whistler Mode Wave Power Distribution Relative to the Plasmapause

A comprehensive numerical raytracing study of whistler mode wave power with the inclusion of finite background electron and ion temperature is performed in order to investigate wave power distribution in relation to the plasmapause. Both Landau damping and linear growth of whistler mode waves are taken into account using a bi-Maxwellian hot electron distribution as well as an isotropic hot electron distribution. Isotropic and bi-Maxwellian distributions yield similar results of statistical spatial wave power for frequencies ...

Maxworth, A.; Gołkowski, M.; Malaspina, D.; Jaynes, A.;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027154

hiss; plasmasphere; Warm Plasma; Raytracing; Magnetosphere; Van Allen Probes

Bayesian Inference of Quasi-Linear Radial Diffusion Parameters using Van Allen Probes

The Van Allen radiation belts in the magnetosphere have been extensively studied using models based on radial diffusion theory, which is derived from a quasi-linear approach with prescribed inner and outer boundary conditions. The 1D diffusion model requires the knowledge of a diffusion coefficient and an electron loss timescale, which is typically parameterized in terms of various quantities such as the spatial (L) coordinate or a geomagnetic index (e.g., Kp). These terms are typically empirically derived, not directly meas ...

Sarma, Rakesh; Chandorkar, Mandar; Zhelavskaya, Irina; Shprits, Yuri; Drozdov, Alexander; Camporeale, Enrico;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027618

radial diffusion; Magnetosphere; Bayesian inference; Van Allen radiation belt; Van Allen Probes

The Dynamics of the Inner Boundary of the Outer Radiation Belt During Geomagnetic Storms

We investigate the shapes of the inner boundary of the outer radiation belt during different geomagnetic storm phases using energetic electron observations from Van Allen Probes. The case of two consecutive but isolated storms in April 2016 shows that (a) the inner boundary, as a function of L shell and energy, exhibits a “V-shaped” form with the energetic electrons showing a kappa-like energy spectrum (electron flux steeply falling with increasing energies), whereas it is in a “S-shaped” form as the energetic electr ...

Shi, Xiaofei; Ren, Jie; Zong, Q.;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027309

Van Allen Probes

The Dynamics of the Inner Boundary of the Outer Radiation Belt During Geomagnetic Storms

We investigate the shapes of the inner boundary of the outer radiation belt during different geomagnetic storm phases using energetic electron observations from Van Allen Probes. The case of two consecutive but isolated storms in April 2016 shows that (a) the inner boundary, as a function of L shell and energy, exhibits a “V-shaped” form with the energetic electrons showing a kappa-like energy spectrum (electron flux steeply falling with increasing energies), whereas it is in a “S-shaped” form as the energetic electr ...

Shi, Xiaofei;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027309

Van Allen Probes

The Relation Between Electron Cyclotron Harmonic Waves and Plasmapause: Case and Statistical Studies

Observationally, electron cyclotron harmonic (ECH) waves are often terminated at the outer boundary of the plasmasphere boundary layer (PBL, i.e., plasmapause). Physics of this empirical relation is not well established. In this study, two categories of ECH waves are shown by their different behaviors near PBL. For Category I, all bands of ECH waves terminate at PBL because the density ratio (nh/nc) between hot and cold electrons decreases dramatically across PBL. For Category II, ECH waves, especially the lower harmonic ban ...

Liu, Xu; Chen, Lunjin; Xia, Zhiyang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087365

two types of ECH wave; Plasmapause; instability; excitation and attenuation mechanism; statistical characteristics of two types of ECH wave; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitud ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Quantifying the Effect of Plasmaspheric Hiss on the Electron Loss From the Slot Region

We present global statistical models of both wave amplitude and wave normal angle (WNA) of plasmaspheric hiss using Van Allen Probe-A observations. They utilize the time history of solar wind parameters, that is, interplanetary magnetic field BZ and solar wind speed, and the AE index for each measurement of hiss waves as inputs. The solar wind parameter-based model generally results in higher performance than using only the AE index as an input. Both observations and model results reveal a clear dependence of hiss wave distr ...

Kim, Kyung-Chan; Shprits, Yuri; Wang, Dedong;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027555

Plasmaspheric Hiss; Van Allen Probes; Electron slot region; Statistical modeling; Diffusion simulation; Wave-particle interaction

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Elec ...

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events o ...

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mod ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes

Dynamical Coupling of Energetic Electrons and Upper-Hybrid Thermal Fluctuations in the Earth s Radiation Belt

Abstract The inner magnetosphere including the radiation belt environment is replete with quasi-electrostatic fluctuations with peak frequency in the upper-hybrid frequency range. Some examples are demonstrated with the Van Allen Probe spacecraft data. These features have recently been explained in the framework of spontaneously emitted thermal noise theory. Such an environment is also characterized by quasi-isotropic population of energized electrons, which naturally leads one to ask whether these electrons and the upper-hy ...

Yoon, Peter; Hwang, Junga;

YEAR: 2020     DOI: 10.1029/2019JA027748

upper-hybrid fluctuation; energetic electron; Radiation belt; Van Allen Probes; spontaneous emission; thermal noise

Evolutions of equatorial ring current ions during a magnetic storm

In this paper, we present evolutions of the phase space density (PSD) spectra of ring current (RC) ions based on observations made by Van Allen Probe B during a geomagnetic storm on 23–24 August 2016. By analyzing PSD spectra ratios from the initial phase to the main phase of the storm, we find that during the main phase, RC ions with low magnetic moment μ values can penetrate deeper into the magnetosphere than can those with high μ values, and that the μ range of PSD enhancement meets the relationship: S(O+) > S(He+) > ...

Huang, Zheng; Yuan, Zhigang; Yu, Xiongdong;

YEAR: 2020     DOI: 10.26464/epp2020019

ULF waves; ring current; wave-particle interactions; Radial Transport; Geomagnetic storm; Decay rates; Van Allen Probes

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Determining plasmaspheric density from the upper hybrid resonance and from the spacecraft potential: How do they compare?

The plasmasphere is a critical region of the magnetosphere. It is important for the evolution of Earth\textquoterights radiation belts. Waves in the plasmasphere interior (hiss) and vicinity (EMIC, chorus) help control the acceleration and loss of radiation belt particles. Thus, understanding the extent, structure, content, and dynamics of the plasmasphere is crucial to understanding radiation belt losses. The Van Allen Probes mission uses two methods to determine the total plasma density. First, the upper hybrid resonance ( ...

Jahn, J.-M.; Goldstein, J.; Kurth, W.S.; Thaller, S.; De Pascuale, S.; Wygant, J.; Reeves, G.D.; Spence, H.E.;

YEAR: 2020     DOI: 10.1029/2019JA026860

cold plasma density; plasmasphere; spacecraft charging; Van Allen Probes; wave resonances

Direct evidence of the pitch angle scattering of relativistic electrons induced by EMIC waves

In this study, we analyze an EMIC wave event of rising tone elements recorded by the Van Allen Probes. The pitch angle distributions of relativistic electrons exhibit a direct response to the two elements of EMIC waves: at the intermediate pitch angle the fluxes are lower and at the low pitch angle the fluxes are higher than those when no EMIC was observed. In particular, the observed changes in the pitch angle distributions are most likely to be caused by nonlinear wave particle interaction. The calculation of the minimum r ...

Zhu, Hui; Chen, Lunjin; Claudepierre, Seth; Zheng, Liheng;

YEAR: 2020     DOI: 10.1029/2019GL085637

EMIC waves; nonlinear wave-particle interaction; pitch angle scattering; Van Allen Probes

Episodic Occurrence of Field-Aligned Energetic Ions on the Dayside

The tens of kiloelectron volt ions observed in the ring current region at L ~ 3\textendash7 generally have pancake pitch angle distributions, that is, peaked at 90\textdegree. However, in this study, by using the Van Allen Probe observations on the dayside, unexpectedly, we have found that about 5\% time, protons with energies of ~30 to 50 keV show two distinct populations, having an additional field-aligned population overlapping with the original pancake population. The newly appearing field-aligned populations have higher ...

Yue, Chao; Bortnik, Jacob; Zou, Shasha; Nishimura, Yukitoshi; Foster, John; Coppeans, Thomas; Ma, Qianli; Zong, Qiugang; Hull, A.; Henderson, Mike; Reeves, Geoffrey; Spence, Harlan;

YEAR: 2020     DOI: 10.1029/2019GL086384

Van Allen Probes

Statistical Dependence of EMIC Wave Scattering on Wave and Plasma Parameters

Abstract A recent statistical study (Qin et al., 2018, https://doi.org/10.1029/2018JA025419) has suggested that not all electromagnetic ion cyclotron (EMIC) waves can scatter relativistic electrons. However, knowledge of the factors that influence the EMIC wave scattering efficiency is still limited in observations. In our study, we perform 6 years of analysis of data from 2013 to 2018, with relativistic electron precipitation (REP) observed by POES and EMIC wave observations from Van Allen Probes. The coincidence occurrence ...

Qin, Murong; Hudson, Mary; Millan, Robyn; Woodger, Leslie; Shen, Xiaochen;

YEAR: 2020     DOI: 10.1029/2020JA027772

EMIC waves; relativistic electron precipitation; coincidence occurrence rate; parametric dependence; Van Allen Probes

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at diffe ...

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

2019

Rapid Precipitation of Relativistic Electron by EMIC Rising-Tone Emissions Observed by the Van Allen Probes

On 23 February 2014, Van Allen Probes sensors observed quite strong electromagnetic ion cyclotron (EMIC) waves in the outer dayside magnetosphere. The maximum amplitude was more than 14 nT, comparable to 7\% of the magnitude of the ambient magnetic field. The EMIC waves consisted of a series of coherent rising tone emissions. Rising tones are excited sporadically by energetic protons. At the same time, the probes detected drastic fluctuations in fluxes of MeV electrons. It was found that the electron fluxes decreased by more ...

Nakamura, S.; Omura, Y.; Kletzing, C.; Baker, D.;

YEAR: 2019     DOI: 10.1029/2019JA026772

EMIC waves; Magnetosphere; microburst; nonlinear; Radiation belt; Van Allen Probes; Wave-particle interaction

Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss

Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in-between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 ...

Pinto, V.; Mourenas, D.; Bortnik, J.; Zhang, X.-J.; Artemyev, A.; Moya, P.; Lyons, L.;

YEAR: 2019     DOI: 10.1029/2019JA026509

Decay rates; EMIC waves; MeV Electron Decay; Plasmaspheric Hiss; Radiation belts; Remnant Belt; Van Allen Probes

An Automatic Detection Algorithm Applied to Fast Magnetosonic Waves With Observations of the Van Allen Probes

Fast magnetosonic (MS) waves can play an important role in the evolution of the inner magnetosphere. However, there is still not an effective method to quantitatively identify such waves for observations of the Van Allen Probes reasonably. In this paper, we used Van Allen Probes data from 18 September 2012 to 30 September 2014 to find a more comprehensive automatic detection algorithm for fast MS waves through statistical analysis of the major properties, including the planarity, ellipticity, and wave normal angle of whole f ...

Yuan, Zhigang; Yao, Fei; Yu, Xiongdong; Huang, Shiyong; Ouyang, Zhihai;

YEAR: 2019     DOI: 10.1029/2018JA026387

ellipticity; magnetosonic wave; normalized distribution; planarity; Van Allen Probes; wave normal angle



  1      2      3      4      5      6