Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 435 entries in the Bibliography.
Showing entries from 101 through 150
2019 |
Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred ... Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026291 EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes |
Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss In addition to clarifying morphological structures of the Earth\textquoterights radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagneti ... Baker, Daniel; Hoxie, Vaughn; Zhao, Hong; Jaynes, Allison; Kanekal, Shri; Li, Xinlin; Elkington, Scot; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026259 convection electric field; Energetic particle deep penetration; Low L Region; Radiation belts; Van Allen Probes |
Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The ... Wang, Zihan; Zou, Shasha; Shepherd, Simon; Liang, Jun; Gjerloev, Jesper; Ruohoniemi, Michael; Kunduri, Bharat; Wygant, John; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2019JA026535 Field-Aligned Current; Particle Injection; Sub-auroral Polarization Stream; Van Allen Probes |
Whistler mode waves are important for precipitating energetic electrons into Earth\textquoterights upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satel ... Li, W.; Shen, X.-C.; Ma, Q.; Capannolo, L.; Shi, R.; Redmon, R.; Rodriguez, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2019GL082095 electron precipitation; hiss; plasmaspheric plume; Plume wave; Van Allen Probes; whistler mode wave |
The dynamics of Van Allen belts revisited Shprits, Yuri; Horne, Richard; Kellerman, Adam; Drozdov, Alexander; Published by: Nature Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1038/nphys4350 |
Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.; Published by: Nature Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1038/nphys4351 |
Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In thes ... Hartley, D.; Kletzing, C.; Chen, L.; Horne, R.; ik, O.; Published by: Geophysical Research Letters Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2019GL082111 chorus waves; EMFISIS; Plasmaspheric Hiss; plasmaspheric plumes; Van Allen Probes; wave normal angle |
Global Empirical Picture of Magnetospheric Substorms Inferred From Multimission Magnetometer Data Magnetospheric substorms represent key explosive processes in the interaction of the Earth\textquoterights magnetosphere with the solar wind, and their understanding and modeling are critical for space weather forecasting. During substorms, the magnetic field on the nightside is first stretched in the antisunward direction and then it rapidly contracts earthward bringing hot plasmas from the distant space regions into the inner magnetosphere, where they contribute to geomagnetic storms and Joule dissipation in the polar iono ... Stephens, G.; Sitnov, M.; Korth, H.; Tsyganenko, N.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA025843 Current sheet thinning; Data-mining; Magnetotail dipolarization; Storm-substorm relationship; substorm current wedge; substorms; Van Allen Probes |
Low-Energy ( The heavy ion component of the low-energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low-energy ( Gkioulidou, Matina; Ohtani, S.; Ukhorskiy, A; Mitchell, D.; Takahashi, K.; Spence, H.; Wygant, J.; Kletzing, C.; Barnes, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA025862 |
Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal an ... Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026041 Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves |
2018 |
The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle ... Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2018 YEAR: 2018   DOI: 10.1029/2018JA026111 electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions |
Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit Variations in the high-energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower-energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low-altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured ... Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018JA025786 electrons; integral flux; Radiation belts; seed population; Van Allen Probes |
Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when c ... Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA026074 energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes |
Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ... e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080122 Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite |
Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed near ... emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA026058 |
Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed near ... emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA026058 |
Resonant electron interaction with whistler-mode chorus waves is recognized as one of the main drivers of radiation belt dynamics. For moderate wave intensity, this interaction is well described by quasi-linear theory. However, recent statistics of parallel propagating chorus waves have demonstrated that 5 - 20\% of the observed waves are sufficiently intense to interact nonlinearly with electrons. Such interactions include phase trapping and phase bunching (nonlinear scattering) effects not described by quasi-linear diffusi ... Vainchtein, D.; Zhang, X.-J.; Artemyev, A.; Mourenas, D.; Angelopoulos, V.; Thorne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018JA025654 |
Generation of lower L -shell dayside chorus by energetic electrons from the plasmasheet Currently, the generation mechanism for the lower L-shell dayside chorus has still remained an open question. Here, we report two storm events: 06-07 March 2016 and 20-21 January 2016, when Van Allen Probes observed enhanced dayside chorus with lower and higher wave normal angles (the angles between the wave vector and the geomagnetic field) in the region of L = 3.5-6.3 and MLT = 5.6-13.5. Hot and energetic (\~ 1-100 keV) electrons displayed enhancements in fluxes and anisotropy when they were injected from the plasmasheet a ... He, Yihua; Xiao, Fuliang; Su, Zhenpeng; Zheng, Huinan; Yang, Chang; Liu, Si; Zhou, Qinghua; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2017JA024889 Dayside chorus generation; Radiation belt; Van Allen Probes; Wave-particle interaction |
Variation in Plasmaspheric Hiss Wave Power With Plasma Density Plasmaspheric hiss waves are commonly observed in the inner magnetosphere. These waves efficiently scatter electrons, facilitating their precipitation into the atmosphere. Predictive inner magnetosphere simulations often model hiss waves using parameterized empirical maps of observed hiss power. These maps nearly always include parameterization by magnetic L value. In this work, data from the Van Allen Probes are used to compare variation in hiss wave power with variation in both L value and cold plasma density. It is found ... Malaspina, David; Ripoll, Jean-Francois; Chu, Xiangning; Hospodarsky, George; Wygant, John; Published by: Geophysical Research Letters Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018GL078564 inner magnetosphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes; Wave models |
In Earth\textquoterights inner magnetosphere, electromagnetic waves in the ultra-low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift-resonance theory, linearization is applied under the assumption of weak wave-particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, ... Li, Li; Zhou, Xu-Zhi; Omura, Yoshiharu; Wang, Zi-Han; Zong, Qiu-Gang; Liu, Ying; Hao, Yi-Xin; Fu, Sui-Yan; Kivelson, Margaret; Rankin, Robert; Claudepierre, Seth; Wygant, John; Published by: Geophysical Research Letters Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018GL079038 drift resonance; nonlinear process; Particle acceleration; Radiation belts; ULF waves; Van Allen Probes; wave-particle interactions |
Anisotropic velocity distributions of protons have long been considered as free energy sources for exciting electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights magnetosphere. Here we rigorously calculated the proton anisotropy parameter using proton data obtained from Van Allen Probe-A observations. The calculations are performed for times during EMIC wave events (distinguishing the times immediately after and before EMIC wave onsets) and for times exhibiting no EMIC waves. We find that the anisotropy val ... Noh, Sung-Jun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Hyomin; Skoug, Ruth; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018JA025385 EMIC waves; Ion cyclotron instability; RBSP; temperature anisotropy; Van Allen Probes |
The composition of plasma inside geostationary orbit based on Van Allen Probes observations The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and ... Yue, Chao; Bortnik, Jacob; Li, Wen; Ma, Qianli; Gkioulidou, Matina; Reeves, Geoffrey; Wang, Chih-Ping; Thorne, Richard; T. Y. Lui, Anthony; Gerrard, Andrew; Spence, Harlan; Mitchell, Donald; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018JA025344 ion composition; plasma pressure; Plasmapause; Van Allen Probes |
Determining the wave vector direction of equatorial fast magnetosonic waves We perform polarization analysis of the equatorial fast magnetosonic waves electric field over a 20 minute interval of Van Allen Probes A Waveform Receiver burst mode data. The wave power peaks at harmonics of the proton cyclotron frequency indicating the spacecraft is near or in the source region. The wave vector is inferred from the direction of the major axis of the electric field polarization ellipsoid and the sign of the phase between the longitudinal electric and compressional magnetic field components. We show that wa ... Boardsen, Scott; Hospodarsky, George; Min, Kyungguk; Averkamp, Terrance; Bounds, Scott; Kletzing, Craig; Pfaff, Robert; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL078695 equatorial fast magnetosonic; E-field polarization analysis; Poynting Flux analysis; Van Allen Probes; wave vector analysis |
EMIC wave events during the four GEM QARBM challenge intervals This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from s ... Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018JA025505 |
The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the dusks ... Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL078731 |
We use the measurements performed by the DEMETER (2004-2010) and the Van Allen Probes (2012-2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth\textquoterights inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz\textendash2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are com ... ahlava, J.; emec, F.; ik, O.; a, I.; Hospodarskyy, G.; Parrot, M.; Kurth, W.; Bortnik, J.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018JA025284 |
Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non-storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes-A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp-01, which detected simultan ... Capannolo, L.; Li, W.; Ma, Q.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Reeves, G.; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL078604 EMIC waves; energetic particle precipitation; pitch angle scattering; Radiation belts; Van Allen Probes; wave particle interactions |
Determining solar wind and geomagnetic activity parameters most favorable to strong electron flux enhancements is an important step towards forecasting radiation belt dynamics. Using electron flux measurements from Global Positioning System satellites at L = 4.2 in 2009-2016, we seek statistical relationships between flux enhancements at different energies and solar wind dynamic pressure Pdyn, AE, and Kp, from hundreds of events inside and outside the plasmasphere. Most ⩾1 MeV electron flux enhancements occur during non-st ... Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Thorne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025497 chorus waves; Electron energization; Electron flux enhancements; GPS satellites; Radiation belt; Solar wind and geomagnetic activities; Van Allen Probes |
Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this paper we investigate the role of magnetic trapping in acceleration and transport of the plasmasheet ions into the ring current. For this purpose we use high-resolution global MHD and three-dimensional test-particle simulations. It is shown that trapping, produced by sharp magnetic field gradients at t ... Ukhorskiy, A; Sorathia, K.; Merkin, V.; Sitnov, M.; Mitchell, D.; Gkioulidou, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025370 injections; plasma pressure; ring current; trapping; Van Allen Probes |
During geomagnetic storms the intensities of the outer radiation belt electron population can exhibit dramatic variability. Deep depletions in intensity during the main phase are followed by increases during the recovery phase, often to levels that significantly exceed their pre-storm values. To study these processes, we simulate the evolution of the outer radiation belt during the 17 March 2013 geomagnetic storm using our newly-developed radiation belt model (CHIMP) based on test particle and coupled 3D ring current and glo ... Sorathia, K.; Ukhorskiy, A; Merkin, V.; Fennell, J.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025506 dropout; Geomagnetic storms; magnetopause loss; Radial Transport; Radiation belt; Van Allen Probes |
Observed propagation route of VLF transmitter signals in the magnetosphere Signals of powerful ground transmitters at various places have been detected by satellites in near-Earth space. The study on propagation mode, ducted or nonducted, has attracted much attentions for several decades. Based on the statistical results from Van Allen Probes (data from Oct. 2012 to Mar. 2017) and DEMETER satellite (from Jan. 2006 to Dec. 2007), we present the ground transmitter signals distributed clearly in ionosphere and magnetosphere. The observed propagation route in the meridian plane in the magnetosphere for ... Zhang, Zhenxia; Chen, Lunjin; Li, Xinqiao; Xia, Zhiyang; Heelis, Roderick; Horne, Richard; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025637 ducted propagation; in magnetosphere; nonducted propagation; Van Allen Probes; VLF transmitter |
Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near-Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi-linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave-particle interactions, which have been successfully used to de ... Zhang, X.-J.; Thorne, R.; Artemyev, A.; Mourenas, D.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025390 chorus waves; Effective amplitude; nonlinear wave-particle interaction; spatial distribution; statistics; Van Allen Probes; Wave-packet length |
Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near-Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi-linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave-particle interactions, which have been successfully used to de ... Zhang, X.-J.; Thorne, R.; Artemyev, A.; Mourenas, D.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025390 chorus waves; Effective amplitude; nonlinear wave-particle interaction; spatial distribution; statistics; Van Allen Probes; Wave-packet length |
Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1\textendash1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30\textdegree from the 2012\textendash2016 tail seasons\textquoteright observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is acc ... Motoba, T.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A.; Mitchell, D.; Takahashi, K.; Lanzerotti, L.; Kletzing, C.; Spence, H.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2018 YEAR: 2018   DOI: 10.1029/2018JA025557 deep inside geosynchronous orbit; dipolarizations; Ion injections; ion species; Van Allen Probes |
Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler-mode chorus waves, is traditionally described using the quasi-linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching \~1\% of the background) therefore ... Mourenas, D.; Zhang, X.-J.; Artemyev, A.; Angelopoulos, V.; Thorne, R.; Bortnik, J.; Neishtadt, A.; Vasiliev, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2018JA025417 chorus waves; ; kinetic equation; nonlinear interaction; Radiation belts; short wave-packets; trapping; Van Allen Probes |
Electromagnetic wave measurements performed by the two Van Allen Probes spacecraft are used to analyze equatorial noise emissions with a quasiperiodic modulation of the wave intensity. These waves are confined to the vicinity of the geomagnetic equator, and they occur primarily on the dayside. In situ plasma number density measurements are used to evaluate density variations related to the wave occurrence. It is shown that the events are sometimes effectively confined to low density regions, being observed at successive sate ... emec, F.; ik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2018JA025482 equatorial noise; quasiperiodic modulation; RBSP; Van Allen Probes |
Global model of plasmaspheric hiss from multiple satellite observations We present a global model of plasmaspheric hiss, using data from eight satellites, extending the coverage and improving the statistics of existing models. We use geomagnetic activity dependent templates to separate plasmaspheric hiss from chorus. In the region 22-14 MLT the boundary between plasmaspheric hiss and chorus moves to lower L* values with increasing geomagnetic activity. The average wave intensity of plasmaspheric hiss is largest on the dayside and increases with increasing geomagnetic activity from midnight throu ... Meredith, Nigel; Horne, Richard; Kersten, Tobias; Li, Wen; Bortnik, Jacob; Sicard-Piet, elica; Yearby, Keith; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2018JA025226 plasmasphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes |
Ultra-low-frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfv\ en waves detected near the magnetic equator at L\~5.7. Results obtained from simulations reproduce important features of the observations, including a substantial e ... Wang, C.; Rankin, R.; Wang, Y.; Zong, Q.-G.; Zhou, X.; Takahashi, K.; Marchand, R.; Degeling, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2018 YEAR: 2018   DOI: 10.1029/2017JA025123 ULF wave; drift-resonant; test particle simulation; Van Allen Probes |
We present observations of very fast radiation belt loss as resolved using high-time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The timescale of these losses is revealed to be as short as \~0.5 - 2 hours during intense magnetic storms, with some storms demonstrating almost total loss on these timescales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the Se ... Olifer, L.; Mann, I.; Morley, S.; Ozeke, L.; Choi, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2018 YEAR: 2018   DOI: 10.1029/2018JA025190 inner magnetosphere; magnetopause shadowing; Radiation belts; Van Allen Probes |
We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17\textendash18 March 2013 and non\textendashstorm time of 19\textendash20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramaticall ... Ma, Q.; Li, W.; Bortnik, J.; Thorne, R.; Chu, X.; Ozeke, L.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2018 YEAR: 2018   DOI: 10.1002/2017JA025114 electron accelerationl whistler mode waves; radial diffusion; radiation belt simulation; Van Allen Probes; Van Allen Probes observation |
We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17\textendash18 March 2013 and non\textendashstorm time of 19\textendash20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramaticall ... Ma, Q.; Li, W.; Bortnik, J.; Thorne, R.; Chu, X.; Ozeke, L.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2018 YEAR: 2018   DOI: 10.1002/2017JA025114 electron accelerationl whistler mode waves; radial diffusion; radiation belt simulation; Van Allen Probes; Van Allen Probes observation |
Now that observations have conclusively established that the inner magnetosphere is abundantly populated with kinetic electric field structures and nonlinear waves, attention has turned to quantifying the ability of these structures and waves to scatter and accelerate inner magnetospheric plasma populations. A necessary step in that quantification is determining the distribution of observed structure and wave properties (e.g. occurrence rates, amplitudes, spatial scales). Kinetic structures and nonlinear waves have broadband ... Malaspina, David; Ukhorskiy, Aleksandr; Chu, Xiangning; Wygant, John; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA025005 Electron Injection; inner magnetosphere; Kinetic structures; Plasma Boundaries; plasma waves; Radiation belts; Van Allen Probes |
Previous studies have revealed a typical picture that seed electrons are transported inward under the drive of radial diffusion and then accelerated via chorus to relativistic energies. Here we show a potentially different process during the 2\textendash3 October 2013 storm when Van Allen Probes observed extremely rapid (by about 50 times in 2 h) flux enhancements of relativistic (1.8\textendash3.4 MeV) electrons but without distinct chorus at lower L-shells. Meanwhile, Time History of Events and Macroscale Interactions duri ... Liu, Si; Yan, Qi; Yang, Chang; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Xiao, Fuliang; Published by: Geophysical Research Letters Published on: 02/2018 YEAR: 2018   DOI: 10.1002/grl.v45.310.1002/2017GL076513 chorus-driven acceleration; radial diffusion; Radiation belt; THEMIS; Van Allen Probes |
Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and be ... Hartley, D.; Kletzing, C.; ik, O.; Chen, L.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA024593 Bimodal; chorus waves; EMFISIS; Plasmaspheric Hiss; Van Allen Probes; wave normal angle |
During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3-6 and MLT=2 - 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 Me ... Yang, Chang; Xiao, Fuliang; He, Yihua; Liu, Si; Zhou, Qinghua; Guo, Mingyue; Zhao, Wanli; Published by: Geophysical Research Letters Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017GL075894 energetic electron; Geomagnetic storm; outer radiation belt; Van Allen Probes; Wave-particle interaction; whistler-mode chorus wave |
Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data An empirical model of the proton radiation belt is constructed from data taken during 2013\textendash2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18\textendash600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functio ... Selesnick, R.; Baker, D.; Kanekal, S.; Hoxie, V.; Li, X.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017JA024661 |
Space Weather Operation at KASI with Van Allen Probes Beacon Signals The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth\textquoterights radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space we ... Lee, Jongkil; Kim, Kyung-Chan; Romeo, Giuseppe; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin; Published by: Space Weather Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017SW001726 Electron acceleration; Radiation belt; Relativistic electron; Space weather; Van Allen Probes |
2017 |
Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics Chorus waves are among the most important natural electromagnetic emissions in the magnetosphere as regards their potential effects on electron dynamics. They can efficiently accelerate or precipitate electrons trapped in the outer radiation belt, producing either fast increases of relativistic particle fluxes, or auroras at high latitudes. Accurately modeling their effects, however, requires detailed models of their wave power and obliquity distribution as a function of geomagnetic activity in a particularly wide spatial do ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Mozer, F.; Hospodarsky, G.; Bonnell, J.; Krasnoselskikh, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017JA024843 |
Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15\textendash100 eV) electrons. A combined investigation of wave and electron distribution characteristics o ... Ma, Q.; Artemyev, A.; Mourenas, D.; Li, W.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017GL075892 Landau damping; maximum refractive index; oblique chorus waves; thermal electron effects; Van Allen Probes; Van Allen Probes observation |
Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15\textendash100 eV) electrons. A combined investigation of wave and electron distribution characteristics o ... Ma, Q.; Artemyev, A.; Mourenas, D.; Li, W.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.; Wygant, J.; Published by: Geophysical Research Letters Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017GL075892 Landau damping; maximum refractive index; oblique chorus waves; thermal electron effects; Van Allen Probes; Van Allen Probes observation |