Van Allen Probes Bibliography is from August 2012 through September 2021


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 138 entries in the Bibliography.

Showing entries from 101 through 138


Weak Kinetic Alfv\ en Waves Turbulence during the November 14th 2012 geomagnetic storm: Van Allen Probes observations

n the dawn sector, L~ 5.5 and MLT~4-7, from 01:30 to 06:00 UT during the November 14th 2012 geomagnetic storm, both Van Allen Probes observed an alternating sequence of locally quiet and disturbed intervals with two strikingly different power fluctuation levels and magnetic field orientations: either small (~10-2 nT2) total power with strong GSM Bx and weak By, or large (~10 nT2) total power with weak Bx, and strong By and Bz components. During both kinds of intervals the fluctuations occur in the vicinity of the local ion g ...

Moya, Pablo.; Pinto, V\; Vi\~nas, Adolfo; Sibeck, David; Kurth, William; Hospodarsky, George; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2014JA020281

Kinetic Alfven Waves; Magnetic Storms; Radiation belts; Van Allen Probes

A Summary of the BARREL Campaigns: Technique for studying electron precipitation

The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) studies the loss of energetic electrons from Earth\textquoterights radiation belts. BARREL\textquoterights array of slowly drifting balloon payloads was designed to capitalize on magnetic conjunctions with NASA\textquoterights Van Allen Probes. Two campaigns were conducted from Antarctica in 2013 and 2014. During the first campaign in January and February of 2013, there were three moderate geomagnetic storms with Sym-Hmin < -40 nT. Similarly, two mino ...

Woodger, L.; Halford, A.; Millan, R.; McCarthy, M.; Smith, D.; Bowers, G.; Sample, J.; Anderson, B.; Liang, X.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020874

electron precipitation; event timing; gamma ray burst; multi-point observation; Radiation belts; Van Allen Probes; x-ray spectroscopy

Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering

In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributi ...

Artemyev, A.; Agapitov, O.; Mozer, F.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020865

butterfly distribution; Electron scattering; nonadiabatic dynamics; Radiation belts; Van Allen Probes

Solar cycle dependence of ion cyclotron wave frequencies

Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth\textquoterights radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approxim ...

Lessard, Marc; Lindgren, Erik; Engebretson, Mark; Weaver, Carol;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020791

EMIC waves; Ion cyclotron; Magnetosphere; plasma waves; Radiation belts; solar cycles

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure ( ...

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes

Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations

We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 unt ...

Neal, Jason; Rodger, Craig; Clilverd, Mark; Thomson, Neil; Raita, Tero; Ulich, Thomas;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020689

AARDDVARK network; electron precipitation; Radiation belts; subionospheric VLF propagation

Simulation of ULF wave modulated radiation belt electron precipitation during the 17 March 2013 storm

Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the mHz frequency range. Balloons measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the BARREL balloon experiments, have observed this modulation at ULF wave frequencies [e.g. Foat et al., 1998; Millan et al., 2002; Millan, 2011]. Although ULF waves in the magnetosphere are seldom directly linked to increases in electron precipitation since the ...

Brito, T.; Hudson, M.; Kress, B.; Paral, J.; Halford, A.; Millan, R.; Usanova, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020838

precipitation; Radiation belts; Ulf; ULF modulation

Systematic analysis of occurrence of equatorial noise emissions using 10 years of data from the Cluster mission

We report results of a systematic analysis of equatorial noise (EN) emissions which are also known as fast magnetosonic waves. EN occurs in the vicinity of the geomagnetic equator at frequencies between the local proton cyclotron frequency and the lower hybrid frequency. Our analysis is based on the data collected by the Spatio-Temporal Analysis of Field Fluctuations\textendashSpectrum Analyzer instruments on board the four Cluster spacecraft. The data set covers the period from January 2001 to December 2010. We have develop ...

a, Hrb\; Santolik, O.; emec, F.; a, Mac\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020268

equatorial noise; magnetosonic waves; plasmasphere; Radiation belts

Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes

Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and ma ...

Hartley, D.; Chen, Y.; Kletzing, C.; Denton, M.; Kurth, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020808

chorus waves; EMFISIS; energetic electrons; Radiation belts; Van Allen Probes; wave-particle interactions

Energetic electron injections deep into the inner magnetosphere associated with substorm activity

From a survey of the first nightside season of NASA\textquoterights Van Allen Probes mission (Dec/2012 \textendash Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells <= 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, ...

Turner, D.; Claudepierre, S.; Fennell, J.; O\textquoterightBrien, T.; Blake, J.; Lemon, C.; Gkioulidou, M.; Takahashi, K.; Reeves, G.; Thaller, S.; Breneman, A.; Wygant, J.; Li, W.; Runov, A.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2015GL063225

energetic particle injections; inner magnetosphere; Radiation belts; substorms; THEMIS; Van Allen Probes


Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student ...

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Characterization of the energy-dependent response of riometer absorption

Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth\textquoterights ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth\textquoterights magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagge ...

Kellerman, A.; Shprits, Y; Makarevich, R.; Spanswick, E.; Donovan, E.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020027

cosmic noise absorption; electron energy; particle modeling; Radiation belts; riometer; electron precipitation

Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations

We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a \textquotedbllefttest-kinetic model ...

Degeling, A.; Rankin, R.; Zong, Q.-G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2013JA019672

adiabatic electron transport; magnetopause buffeting; Radiation belts; ULF waves

The Evolving Space Weather System - Van Allen Probes Contribution

The overarching goal and purpose of the study of space weather is clear - to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800\textquoterights to modern day disturbances of the electric power grid, communications a ...

Zanetti, L.; Mauk, B.; Fox, N.J.; Barnes, R.J.; Weiss, M.; Sotirelis, T.S.; Raouafi, N.-E.; Kessel, R.; Becker, H.;

Published by: Space Weather      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014SW001108

Radiation belts; Van Allen Probes

Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extende ...

Pakhotin, I.; Drozdov, A; Shprits, Y; Boynton, R.; Subbotin, D.; Balikhin, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020238

Radiation belts; Space weather

On the threshold energization of radiation belt electrons by double layers

Using a Hamiltonian approach, we quantify the energization threshold of electrons interacting with radiation belts\textquoteright double layers discovered by Mozer et al. (2013). We find that double layers with electric field amplitude E0 ranging between 10 and 100 mV/m and spatial scales of the order of few Debye lengths are very efficient in energizing electrons with initial velocities v|| <= vth to 1 keV levels but are unable to energize electrons with E >= 100 keV. Our results indicate that the localized electric field a ...

Osmane, A.; Pulkkinen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020236

Radiation belts; wave-particle interactions

The Comprehensive Inner Magnetosphere-Ionosphere Model

Simulation studies of the Earth\textquoterights radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric densit ...

Fok, M.-C.; Buzulukova, N; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020239

inner magnetosphere; magnetosphere-ionosphere coupling; ring current; Radiation belts; Van Allen Probes

Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign

We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17\textendash25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly withi ...

Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020161

Chorus; ELF/VLF; Radiation belts; subauroral latitudes; wave-particle interactions

Comparison of Energetic Electron Intensities Outside and Inside the Radiation Belts

The intensities of energetic electrons (~25 \textendash 800 keV) outside and inside Earth\textquoterights radiation belts are reported using measurements from THEMIS and Van Allen Probes during non-geomagnetic storm periods. Three intervals of current disruption/dipolarization events in August, 2013 were selected for comparison. The following results are obtained. (1) Phase space densities (PSDs) for the equatorially mirroring electron population at three values of the first adiabatic invariant (20, 70, and 200 MeV/G) at the ...

T. Y. Lui, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020049

Dipolarization; energetic electrons; Radiation belts; substorm; Van Allen Probes

The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison

Measurements from the Polar-Orbiting Environmental Satellite (POES) Medium Energy Proton and Electron Detector (MEPED) instrument are widely used in studies into radiation belt dynamics and atmospheric coupling. However, this instrument has been shown to have a complex energy-dependent response to incident particle fluxes, with the additional possibility of low-energy protons contaminating the electron fluxes. We test the recent Monte Carlo theoretical simulation of the instrument by comparing the responses against observati ...

Whittaker, Ian; Rodger, Craig; Clilverd, Mark; Sauvaud, \;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020021

DEMETER; energetic electron flux; geometric factor; POES; Radiation belts

Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves

We present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth\textquoterights radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional op ...

Artemyev, A.; Vasiliev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.; Boscher, D.; Rolland, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1610.1002/2014GL061380

particle trapping; Radiation belts; Wave-particle interaction

Limiting energy spectrum of an electron radiation belt

To determine the Kennel-Petschek limiting particle flux in a planetary radiation belt in a fully relativistic regime, without assuming a predetermined form for the particle energy distribution, has been a long-standing challenge in space physics. In this paper, for the case of whistler mode wave-electron interaction, we meet this challenge. The limiting flux is determined by a steady state marginal stability criterion in which a convective wave gain condition is applied over all frequencies for which wave growth occurs. This ...

Summers, Danny; Shi, Run;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020250

limiting trapped flux; Radiation belts

Thermal electron acceleration by localized bursts of electric field in the radiation belts

In this paper we investigate the resonant interaction of thermal ~10-100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth\textquoterights outer radiation belts. These structures propagate mostly away from thegeomagnetic equator a ...

Artemyev, A.; Agapitov, O.; Mozer, F.; Krasnoselskikh, V.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061248

Radiation belts; thermal electrons; Van Allen Probes; Wave-particle interaction

Estimates of the power per mode number of broadband ULF waves at geosynchronous orbit

In studies of radial diffusion processes in the magnetosphere it is well known that ultralow frequency (ULF) waves of frequency mωd can resonantly interact with particles of drift frequency ωd, where m is the waves\textquoteright azimuthal mode number. Due to difficulties in estimating m, an oversimplifying assumption is often made in simulations, namely that all ULF wave power is located at a single mode number. In this paper a technique is presented for extracting information on the distribution of ULF power in a range o ...

Sarris, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2013JA019238

Magnetosphere; mode number; radial diffusion; Radiation belts; ULF waves; ultralow frequency

On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event

On 30 September 2012, a flux \textquotedblleftdropout\textquotedblright occurred throughout Earth\textquoterights outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA\textquoterights Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA\textquoterights Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, eq ...

Turner, D.; Angelopoulos, V.; Morley, S.; Henderson, M.; Reeves, G.; Li, W.; Baker, D.; Huang, C.-L.; Boyd, A.; Spence, H.; Claudepierre, S.; Blake, J.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019446

dropouts; inner magnetosphere; loss; Radiation belts; relativistic electrons; Van Allen Probes

Precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere

There is a renewed interest in the study of the radiation belts with the recent launch of the Van Allen Probes satellites. The mechanisms that drive the global response of the radiation belts to geomagnetic storms are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mob ...

Brito, Thiago;

Published by:       Published on:

YEAR: 2014     DOI:

0373:Geophysics; 0607:Electromagnetics; 0725:Atmospheric sciences; Atmospheric sciences; Earth sciences; Electromagnetics; Energization; Geophysics; precipitation; Pure sciences; Radiation belts; Ulf


Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes

Energetic electron precipitation (EEP) impacts the chemistry of the middle atmosphere with growing evidence of coupling to surface temperatures at high latitudes. To better understand this link, it is essential to have realistic observations to properly characterize precipitation and which can be incorporated into chemistry-climate models. The Polar-orbiting Operational Environmental Satellite (POES) detectors measure precipitating particles but only integral fluxes and only in a fraction of the bounce loss cone. Ground-base ...

Rodger, Craig; Kavanagh, Andrew; Clilverd, Mark; Marple, Steve;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA019439

electron precipitation; POES; Radiation belts; riometery

Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times

The energy spectra of energetic electron precipitation from the radiation belts are studied in order to improve our understanding of the influence of radiation belt processes. The Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) microsatellite electron flux instrument is comparatively unusual in that it has very high energy resolution (128 channels with 17.9 keV widths in normal survey mode), which lends itself to this type of spectral analysis. Here electron spectra from DEMETER have been ...

Whittaker, Ian; Gamble, Rory; Rodger, Craig; Clilverd, Mark; Sauvaud, \;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA019228

DEMETER; electron spectral fit; Radiation belts

Dynamics of the Earth\textquoterights Radiation Belts and Inner Magnetosphere

Trapped by Earth\textquoterights magnetic field far above the planet\textquoterights surface, the energetic particles that fill the radiation belts are a sign of the Sun\textquoterights influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth\textquoterights Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent rese ...

Schultz, Colin;

Published by: Eos, Transactions American Geophysical Union      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/eost.v94.5210.1002/2013EO520007

aurora; Magnetosphere; Radiation belts; Van Allen Probes

New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation

Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons w ...

Blum, L.; Schiller, Q.; Li, X.; Millan, R.; Halford, A.; Woodger, L.;

Published by: Geophysical Research Letters      Published on: 11/2013

YEAR: 2013     DOI: 10.1002/2013GL058546

CubeSats; precipitation; Radiation belts; Van Allen Probes

Application of a new data operator-splitting data assimilation technique to the 3-D VERB diffusion code and CRRES measurements

In this study we present 3-D data assimilation using CRRES data and 3-D Versatile Electron Radiation Belt Model (VERB) using a newly developed operator-splitting method. Simulations with synthetic data show that the operator-splitting Kalman filtering technique proposed in this study can successfully reconstruct the underlying dynamic evolution of the radiation belts. The method is further verified by the comparison with the conventional Kalman filter. We applied the new approach to 3-D data assimilation of real data to glob ...

Shprits, Yuri; Kellerman, Adam; Kondrashov, Dmitri; Subbotin, Dmitriy;

Published by: Geophysical Research Letters      Published on: 10/2013

YEAR: 2013     DOI: 10.1002/grl.50969

data assimilation; Modeling; Radiation belts

Analysis of EMIC-wave-moderated flux limitation of measured energetic ion spectra in multispecies magnetospheric plasmas

A differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on electromagnetic ion cyclotron (EMIC) waves that scatter the ions. The idea is that EMIC waves may limit the highest ion intensities during acceleration phases of storms and substorms (~ hour) while other mechanisms (e.g., charge exchange) may account for losses below those limits and over longer periods of time. This approach is applied to published Earth magnetosphere energetic ion ...

Mauk, B.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50789

energetic ions; Radiation belts; ring current; Van Allen Probes

Storm-induced energization of radiation belt electrons: Effect of wave obliquity

New Cluster statistics allow us to determine for the first time the variations of both the obliquity and intensity of lower-band chorus waves as functions of latitude and geomagnetic activity near L\~5. The portion of wave power in very oblique waves decreases during highly disturbed periods, consistent with increased Landau damping by inward-penetrating suprathermal electrons. Simple analytical considerations as well as full numerical calculations of quasi-linear diffusion rates demonstrate that early-time electron accelera ...

Artemyev, A.; Agapitov, O.; Mourenas, D.; Krasnoselskikh, V.; Zelenyi, L.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50837

magnetic storm; Radiation belts; wave-particle interactions


Energetic radiation belt electron precipitation showing ULF modulation

1] The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 period range (45 s\textendash600 s) on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers ...

Brito, T.; Woodger, L.; Hudson, M.; MILLAN, R;

Published by: Geophysical Research Letters      Published on: 11/2012

YEAR: 2012     DOI: 10.1029/2012GL053790

Charged particle motion and acceleration; Energetic particles: precipitating; Radiation belts; wave-particle interactions

Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068

As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing e ...

Hudson, M.; Brito, Thiago; Elkington, Scot; Kress, Brian; Li, Zhao; Wiltberger, Mike;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.03.017

Magnetosphere; Modeling; Radiation belts; Solar wind


Radiation belt storm probes: Resolving fundamental physics with practical consequences

The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth\textquoterights radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radi ...

Ukhorskiy, Aleksandr; Mauk, Barry; Fox, Nicola; Sibeck, David; Grebowsky, Joseph;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2011

YEAR: 2011     DOI: 10.1016/j.jastp.2010.12.005

Radiation belts; Space weather; Van Allen Probes

Understanding relativistic electron losses with BARREL

The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth\textquoterights atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(\~20kg) balloon payloads will be launched, providing multi-point ...

Millan, R.M.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2011

YEAR: 2011     DOI: 10.1016/j.jastp.2011.01.006

inner magnetosphere; precipitation; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions


Where Are the "Killer Electrons" of the Declining Phase of Solar Cycle 23

\textquotedblleftKiller electrons,\textquotedblright enhanced fluxes of radiation belt electrons in the magnetosphere\textendashespecially those at geosynchronous orbit (GEO)\textendashwere an important space weather phenomenon during the decline to minimum of the last 11-year solar cycle (1993\textendash1995). Indeed, the fluxes of these electrons were reported at the time to have significantly influenced the incidence of anomalies on numerous spacecraft, both commercial and national defense. The incidences of spacecraft an ...

Baker, Daniel; Lanzerotti, Louis;

Published by: Space Weather      Published on: 07/2006

YEAR: 2006     DOI: 10.1029/2006SW000259

Radiation belts

  1      2      3