Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 158 entries in the Bibliography.
Showing entries from 151 through 158
2007 |
[1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth\textquoterights inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for \~10 years. More recently, at the end of solar cycle 23, a number of vi ... Kress, B.; Hudson, M.; Looper, M.; Albert, J.; Lyon, J.; Goodrich, C.; Published by: Journal of Geophysical Research Published on: 09/2007 YEAR: 2007   DOI: 10.1029/2006JA012218 Shock-Induced Transport. Slot Refilling and Formation of New Belts. |
2005 |
The influence of ultralow frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a compressed dipole magnetic field is examined. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields on the guiding center trajectories of relativistic electrons. A model is developed, describing magnetic and electric fields associated with poloidal mode Pc5 ULF waves. The frequency and L dependence of the ULF wave power are included in this model by incorporating published ... Perry, K.; Hudson, M.; Elkington, S.; Published by: Journal of Geophysical Research Published on: 03/2005 YEAR: 2005   DOI: 10.1029/2004JA010760 |
2002 |
MHD/particle simulations of radiation belt dynamics Particle fluxes in the outer radiation belts can show substantial variation in time, over scales ranging from a few minutes, such as during the sudden commencement phase of geomagnetic storms, to the years-long variations associated with the progression of the solar cycle. As the energetic particles comprising these belts can pose a hazard to human activity in space, considerable effort has gone into understanding both the source of these particles and the physics governing their dynamical behavior. Computationally tracking ... ELKINGTON, S; Hudson, M.; Wiltberger, M.J; Lyon, J.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 04/2002 YEAR: 2002   DOI: 10.1016/S1364-6826(02)00018-4 Shock-Induced Transport. Slot Refilling and Formation of New Belts. |
1999 |
There has been increasing evidence that Pc-5 ULF oscillations play a fundamental role in the dynamics of outer zone electrons. In this work we examine the adiabatic response of electrons to toroidal-mode Pc-5 field line resonances using a simplified magnetic field model. We find that electrons can be adiabatically accelerated through a drift-resonant interaction with the waves, and present expressions describing the resonance condition and half-width for resonant interaction. The presence of magnetospheric convection electri ... Elkington, Scot; Hudson, M.; Chan, Anthony; Published by: Geophysical Research Letters Published on: 11/1999 YEAR: 1999   DOI: 10.1029/1999GL003659 |
Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relati ... Hudson, M.; Elkington, S.; Lyon, J.; Goodrich, C.; Rosenberg, T.; Published by: Published on: YEAR: 1999   DOI: 10.1029/GM10910.1029/GM109p0171 |
1993 |
We model the rapid (\~ 1 min) formation of a new electron radiation belt at L ≃ 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the CRRES satellite. Guided by the observed electric and magnetic fields, we represent the time-dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earth\textquoterights magnetic field. We follow the electrons using a relativistic guiding center code. The test ... Li, Xinlin; Roth, I.; Temerin, M.; Wygant, J.; Hudson, M.; Blake, J.; Published by: Geophysical Research Letters Published on: 11/1993 YEAR: 1993   DOI: 10.1029/93GL02701 Shock-Induced Transport. Slot Refilling and Formation of New Belts. |
1970 |
Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17\textendash18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant \textmu. For each value of \textmu, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifet ... Lanzerotti, L.; Maclennan, C.; Schulz, Michael; Published by: Journal of Geophysical Research Published on: 10/1970 YEAR: 1970   DOI: 10.1029/JA075i028p05351 |
1969 |
Diffusion of Equatorial Particles in the Outer Radiation Zone Expansions and contractions of the permanently compressed magnetosphere lead to the diffusion of equatorially trapped particles across drift shells. A general technique for obtaining the electric fields induced by these expansions and contractions is described and applied to the Mead geomagnetic field model. The resulting electric drifts are calculated and are superimposed upon the gradient drift executed by a particle that conserves its first (μ) and second (J = 0) adiabatic invariants. The noon-midnight asymmetry of the u ... Schulz, Michael; Eviatar, Aharon; Published by: Journal of Geophysical Research Published on: 05/1969 YEAR: 1969   DOI: 10.1029/JA074i009p02182 |