Bibliography



Found 3502 entries in the Bibliography.


Showing entries from 151 through 200


2020

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ...

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes

Evolution of pitch angle distributions of relativistic electrons during geomagnetic storms: Van Allen Probes Observations

We present a study analyzing relativistic and ultra relativistic electron energization and the evolution of pitch angle distributions using data from the Van Allen Probes. We study the connection between energization and isotropization to determine if there is a coherence across storms and across energies. Pitch angle distributions are fit with a J0sinnθ function, and the variable ’n’ is characterized as the pitch angle index and tracked over time. Our results show that, consistently across all storms with ultra relativ ...

Greeley, Ashley; Kanekal, Shrikanth; Sibeck, David; Schiller, Quintin; Baker, Daniel;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028335

pitch angle distributions; relativistic electrons; ultra relativistic electrons; Van Allen Probes; pitch angle distribution evolution; anisotropic electrons

Evolution of pitch angle distributions of relativistic electrons during geomagnetic storms: Van Allen Probes Observations

We present a study analyzing relativistic and ultra relativistic electron energization and the evolution of pitch angle distributions using data from the Van Allen Probes. We study the connection between energization and isotropization to determine if there is a coherence across storms and across energies. Pitch angle distributions are fit with a J0sinnθ function, and the variable ’n’ is characterized as the pitch angle index and tracked over time. Our results show that, consistently across all storms with ultra relativ ...

Greeley, Ashley; Kanekal, Shrikanth; Sibeck, David; Schiller, Quintin; Baker, Daniel;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028335

pitch angle distributions; relativistic electrons; ultra relativistic electrons; Van Allen Probes; pitch angle distribution evolution; anisotropic electrons

Prompt emergence and disappearance of EMIC waves driven by the sequentially enhanced solar wind dynamic pressure

Van Allen Probes (VAPs) and multiple ground-based stations simultaneously observed prompt emergences and disappearances of electromagnetic ion cyclotron (EMIC) waves driven by the sequentially enhanced solar wind dynamic pressure in the dayside inner magnetosphere on 6 November 2015. The measured hot protons (> 60 keV) display enhancements of perpendicular temperature during compressions, which provides sufficient temperature anisotropies for the EMIC wave generation so that the calculated linear growth rate also agrees well ...

Xue, Zuxiang; Yuan, Zhigang; Yu, Xiongdong;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091479

EMIC wave; solar wind dynamic pressure; Magnetospheric compression; Multipoint observations; Van Allen Probes

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Mirror instabilities in the inner magnetosphere and their potential for localized ULF wave generation

Results from the NASA Van Allen Probes mission indicate extensive observations of mirror/drift-mirror (M/D-M hereafter) unstable plasma regions in the nightside inner magnetosphere. Said plasmas lie on the threshold between the kinetic and frozen-in plasma regimes and have favorable conditions for the formation of M/D-M modes and subsequent ultra-low frequency (ULF) wave signatures in the surrounding plasma. We present the results of a climatological analysis of plasma-γ (anisotropy measure) and total plasma-β (ratio of pa ...

Cooper, M.; Gerrard, A.; Lanzerotti, L.; Soto-Chavez, A.; Kim, H.; Kuzichev, I.; Goodwin, L.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028773

Mirror mode-unstable plasma; ULF waves; magnetotail injections; inner magnetosphere; Van Allen Probes

Mirror instabilities in the inner magnetosphere and their potential for localized ULF wave generation

Results from the NASA Van Allen Probes mission indicate extensive observations of mirror/drift-mirror (M/D-M hereafter) unstable plasma regions in the nightside inner magnetosphere. Said plasmas lie on the threshold between the kinetic and frozen-in plasma regimes and have favorable conditions for the formation of M/D-M modes and subsequent ultra-low frequency (ULF) wave signatures in the surrounding plasma. We present the results of a climatological analysis of plasma-γ (anisotropy measure) and total plasma-β (ratio of pa ...

Cooper, M.; Gerrard, A.; Lanzerotti, L.; Soto-Chavez, A.; Kim, H.; Kuzichev, I.; Goodwin, L.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028773

Mirror mode-unstable plasma; ULF waves; magnetotail injections; inner magnetosphere; Van Allen Probes

Mirror instabilities in the inner magnetosphere and their potential for localized ULF wave generation

Results from the NASA Van Allen Probes mission indicate extensive observations of mirror/drift-mirror (M/D-M hereafter) unstable plasma regions in the nightside inner magnetosphere. Said plasmas lie on the threshold between the kinetic and frozen-in plasma regimes and have favorable conditions for the formation of M/D-M modes and subsequent ultra-low frequency (ULF) wave signatures in the surrounding plasma. We present the results of a climatological analysis of plasma-γ (anisotropy measure) and total plasma-β (ratio of pa ...

Cooper, M.; Gerrard, A.; Lanzerotti, L.; Soto-Chavez, A.; Kim, H.; Kuzichev, I.; Goodwin, L.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028773

Mirror mode-unstable plasma; ULF waves; magnetotail injections; inner magnetosphere; Van Allen Probes

TWINS Observations of the Dynamics of Ring Currents Ion Spectra on 17th March and 7th October 2015

Direct comparisons between RBSP (Van Allen Probes or Radiation Belt Storm Probes) and TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) for the main phase of two storms, 17th March and 7th October 2015, showed agreement between the in–situ ion measurements and the ion spectra from the deconvolved energetic neutral atom (ENA) measurements, except when O+ ions were significant. Spatial evolution of individual energy peaks in the ion spectra are studied using TWINS data. O+ ions are seen to result in intense peaks at ...

Shekhar, S.; Perez, J.; Ferradas, C.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028156

Ring Currents; Magnetosphere; energy dependent drift; ion nose; Substorm Injections; Ion Spectra; Van Allen Probes

TWINS Observations of the Dynamics of Ring Currents Ion Spectra on 17th March and 7th October 2015

Direct comparisons between RBSP (Van Allen Probes or Radiation Belt Storm Probes) and TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) for the main phase of two storms, 17th March and 7th October 2015, showed agreement between the in–situ ion measurements and the ion spectra from the deconvolved energetic neutral atom (ENA) measurements, except when O+ ions were significant. Spatial evolution of individual energy peaks in the ion spectra are studied using TWINS data. O+ ions are seen to result in intense peaks at ...

Shekhar, S.; Perez, J.; Ferradas, C.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028156

Ring Currents; Magnetosphere; energy dependent drift; ion nose; Substorm Injections; Ion Spectra; Van Allen Probes

Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models

Abstract The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss w ...

Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028403

chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions

Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models

Abstract The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss w ...

Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028403

chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

Ring Current Decay During Geomagnetic Storm Recovery Phase: Comparison Between RBSP Observations and Theoretical Modeling

Ring current decay during storm recovery phase may be affected by different loss processes. In this study, we have investigated the lifetimes of ring current ions (H+ and O+) of energies from 1 keV to several hundred keV at L shell from 3 to 6 during the storm recovery phase through a statistical survey. The observational data of 48 geomagnetic storms from March 2013 to May 2019 are collected based on Van Allen Probe observations. We find that (1) the observed lifetimes of H+ and O+ in general increase with L shell and (2) ...

Chen, Ao; Yue, Chao; Chen, HongFei; Zong, Qiugang; Fu, Suiyan; Wang, Yongfu; Ren, Jie;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028500

charge exchange; lifetime; ring current decay; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ...

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ...

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ...

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ...

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Detection of Hertz Frequency Multiharmonic Field Line Resonances at Low-L (L = 1.1–1.5) During Van Allen Probe Perigee Passes

We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ...

Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090632

Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Inner Magnetospheric Response to the Interplanetary Magnetic Field By Component: Van Allen Probes and Arase Observations

We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ...

Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028765

By; y-component; inner magnetosphere; IMF; response; Van Allen Probes

Narrowband Magnetosonic Waves Near the Lower Hybrid Resonance Frequency in the Inner Magnetosphere: Wave Properties and Excitation Conditions

In this study, the excitation of narrowband fast magnetosonic (MS) waves near the lower hybrid resonance frequency (fLHR) has been investigated with observations from Van Allen Probes mission and linear growth theory. A typical wave event is first examined to show that these waves can be excited through linear instabilities driven by partial shell distributions of protons. Then it is found that these narrowband MS waves from 188 wave events observed by the Van Allen Probe A between January 1, 2013 to December 31, 2015 have c ...

Ouyang, Zhihai; Yuan, Zhigang; Yu, Xiongdong; Yao, Fei;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028158

central frequencies; linear growth rates; lower hybrid resonance frequency; narrowband fast magnetosonic wave; Proton rings; Van Allen Probes

Narrowband Magnetosonic Waves Near the Lower Hybrid Resonance Frequency in the Inner Magnetosphere: Wave Properties and Excitation Conditions

In this study, the excitation of narrowband fast magnetosonic (MS) waves near the lower hybrid resonance frequency (fLHR) has been investigated with observations from Van Allen Probes mission and linear growth theory. A typical wave event is first examined to show that these waves can be excited through linear instabilities driven by partial shell distributions of protons. Then it is found that these narrowband MS waves from 188 wave events observed by the Van Allen Probe A between January 1, 2013 to December 31, 2015 have c ...

Ouyang, Zhihai; Yuan, Zhigang; Yu, Xiongdong; Yao, Fei;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028158

central frequencies; linear growth rates; lower hybrid resonance frequency; narrowband fast magnetosonic wave; Proton rings; Van Allen Probes

Narrowband Magnetosonic Waves Near the Lower Hybrid Resonance Frequency in the Inner Magnetosphere: Wave Properties and Excitation Conditions

In this study, the excitation of narrowband fast magnetosonic (MS) waves near the lower hybrid resonance frequency (fLHR) has been investigated with observations from Van Allen Probes mission and linear growth theory. A typical wave event is first examined to show that these waves can be excited through linear instabilities driven by partial shell distributions of protons. Then it is found that these narrowband MS waves from 188 wave events observed by the Van Allen Probe A between January 1, 2013 to December 31, 2015 have c ...

Ouyang, Zhihai; Yuan, Zhigang; Yu, Xiongdong; Yao, Fei;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028158

central frequencies; linear growth rates; lower hybrid resonance frequency; narrowband fast magnetosonic wave; Proton rings; Van Allen Probes

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ...

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ...

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ...

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Statistical Study of Chorus Modulations by Background Magnetic Field and Plasma Density

In this study, we use observations of THEMIS and Van Allen Probes to statistically study the modulations of chorus emissions by variations of background magnetic field and plasma density in the ultra low frequency range. The modulation events are identified automatically and divided into three types according to whether the chorus intensity correlates to the variations of the magnetic field only (Type B), plasma density only (Type N), or both (Type NB). For the THEMIS observations, the occurrences of the Types B and N are la ...

Xia, Zhiyang; Chen, Lunjin; Li, Wen;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089344

Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients

Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ...

Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028411

ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes

Characteristics of Electron Precipitation During 40 Energetic Electron Injections Inferred via Subionospheric VLF Signal Propagation

Energetic electron injection events are associated with energetic electron precipitation (EEP) through possible resonant wave-particle interactions. Previous studies confirm the impacts of injection-driven precipitation on observed amplitude/phase of subionospheric VLF (very low frequency) signals transmitted from distant artificial transmitters. Currently, there are substantial uncertainties on precipitation characteristics and flux during injection events. In this work we study 40 injection events selected by Van Allen Pro ...

Ghaffari, R.; Cully, C.; Turner, D.; Reeves, G.;

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027233

Van Allen Probes



  2      3      4      5      6      7