Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 400 entries in the Bibliography.


Showing entries from 201 through 250


2017

Generation of extremely low frequency chorus in Van Allen radiation belts

Recent studies have shown that chorus can efficiently accelerate the outer radiation belt electrons to relativistic energies. Chorus, previously often observed above 0.1 equatorial electron gyrofrequency fce, was generated by energetic electrons originating from Earth\textquoterights plasma sheet. Chorus below 0.1 fce has seldom been reported until the recent data from Van Allen Probes, but its origin has not been revealed so far. Because electron resonant energy can approach the relativistic level at extremely low frequency ...

Xiao, Fuliang; Liu, Si; Tao, Xin; Su, Zhenpeng; Zhou, Qinghua; Yang, Chang; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023561

ELF chorus waves; RBSP results; relativistic distribution; Van Allen Probes; Wave-particle interaction

Ion acceleration at dipolarization fronts in the inner magnetosphere

During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds of keV. Plasma pressure is the source of global storm time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fron ...

Ukhorskiy, A; Sitnov, M.; Merkin, V.; Gkioulidou, M.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023304

injections; ring current; trapping; Van Allen Probes

Oxygen cyclotron harmonic waves observed by the Van Allen Probes

Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere (L~5) off the magnetic equator (MLAT~-7.5\textdegree) during a magnetic storm. We find that the multiple-harmonic emissions have their PSD peaks at 2~8 equatorial oxygen gyro-harmonics (f~nfO+, n=2~8) while the fundamental mode (n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observatio ...

Xiongdong, Yu; Zhigang, Yuan; Dedong, Wang; Shiyong, Huang; Haimeng, Li; Tao, Yu; Zheng, Qiao;

Published by: Science China: Earth Sciences      Published on: 03/2017

YEAR: 2017     DOI: 10.1007/s11430-016-9024-3

Oxygen Cyclotron Harmonic Waves; Radiation belt; Ring current ions; Van Allen Probes

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly dist ...

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadban ...

Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr; Manweiler, Jerry; Spence, Harlan; Singer, Howard; Claudepierre, Seth; Larsen, Brian; Soto-Chavez, Rualdo; Cohen, Ross;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023770

drift-bounce resonance; high m ULF waves; Second harmonic poloidal mode; Van Allen Probes

Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons

The most significant unknown regarding relativistic electrons in Earth\textquoterights outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurem ...

Schiller, Q.; Tu, W.; Ali, A.; Li, X.; Godinez, H.; Turner, D.; Morley, S.; Henderson, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023093

CubeSat; data assimilation; electron; event specific; Modeling; Radiation belt; Van Allen Probes

Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

This paper presents observations of ultra-low frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred two days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the pre-midnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broa ...

Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr; Manweiler, Jerry; Spence, Harlan; Singer, Howard; Claudepierre, Seth; Larsen, Brian; Soto-Chavez, Rualdo; Cohen, Ross;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023770

drift-bounce resonance; high m ULF waves; Second harmonic poloidal mode; Van Allen Probes

Van Allen Probes observation of a 360\textdegree phase shift in the flux modulation of injected electrons by ULF waves

We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultralow frequency (ULF) waves on 29 October 2013. Oscillations in electron flux were observed at the period of \~450 s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from ...

Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, J.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016GL071252

drift resonance; injection; PSD gradient; ULF waves; Van Allen Probes

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whist ...

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whist ...

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ...

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1029/1999JA900445

energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities ...

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities ...

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plas ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

Transitional behavior of different energy protons based on Van Allen Probes observations

Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here we statistically analyze ~1 eV to 50 keV hydrogen (H+) differential flu ...

Yue, Chao; Bortnik, Jacob; Chen, Lunjin; Ma, Qianli; Thorne, Richard; Reeves, Geoffrey; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071324

Transition in drift behavior; UBK method; Van Allen Probes

\textquotedblleftZipper-like\textquotedblright periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations

An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single s ...

Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023536

magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like

Acceleration at Dipolarization Fronts in the Inner Magnetosphere

During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds keV. Plasma pressure is the source of global storm-time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fronts ...

Ukhorskiy, A; Sitnov, M.; Merkin, V.; Gkioulidou, M.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016ja023304

injections; ring current; trapping; Van Allen Probes

Climatology of high-β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high-resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high-beta (β) plasma events (defined here as β > 1) as measured by the RBSPICE instrument in the \~45 keV to \~600 keV proton energy range in the inner ...

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022513

climatology; high-beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

2016

Climatology of high β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high beta (β) plasma events (defined here as β>1) as measured by the RBSPICE instrument in the \~45-keV to \~600-keV proton energy range in the inner m ...

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA022513

climatology; high beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

Electron holes in the outer radiation belt: Characteristics and their role in electron energization

Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energ ...

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Drake, J.; Kuzichev, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023083

Electron acceleration; electron holes; injection; Radiation belt; solitary waves; Van Allen Probes

Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two s ...

Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071728

AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes

Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two s ...

Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071728

AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy fr ...

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023600

2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Transitional behavior of different energy protons based on Van Allen Probes observations

Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here, we statistically analyze ~1 eV to 50 keV Hydrogen (H+) differential flu ...

Yue, Chao; Bortnik, Jacob; Chen, Lunjin; Ma, Qianli; Thorne, Richard; Reeves, Geoffrey; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071324

Transition in drift behavior; UBK method; Van Allen Probes

Van Allen Probes observation of a 360\textdegree phase shift in the flux modulation of injected electrons by ULF waves

We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultra-low frequency (ULF) waves on October 29, 2013. Oscillations in electron flux were observed at the period of \~450s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from ...

Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, John; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071252

drift-resonance; injection; PSD gradient; ULF waves; Van Allen Probes

Ring Current Pressure Estimation with RAM-SCB using Data Assimilation and Van Allen Probe Flux Data

Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is important for understanding the formation and evolution of the ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB model is corrected via an ensemble b ...

Godinez, Humberto; Yu, Yiqun; Lawrence, Eric; Henderson, Michael; Larsen, Brian; Jordanova, Vania;

Published by: Geophysical Research Letters      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016GL071646

data assimilation; ring current; Van Allen Probes

A new method to study the time correlation between Van Allen Belt electrons and earthquakes

A new method to study a possible temporal correlation between hundreds of keV Van Allen Belt electrons and strong earthquakes is proposed. It consists in measuring the electrons pitch angle distribution (PAD), searching for PAD disturbances, and studying the time correlation between these PAD disturbances and strong earthquakes, occurring within a defined time window. The method was applied to measurements of energetic electrons, which were performed with the Energetic Particle, Composition, and Thermal Plasma (ECT)-MagEIS d ...

Tao, Dan; Battiston, Roberto; Vitale, Vincenzo; Burger, William; Lazzizzera, Ignazio; Cao, Jinbin; Shen, Xuhui;

Published by: International Journal of Remote Sensing      Published on: 10/2016

YEAR: 2016     DOI: 10.1080/01431161.2016.1239284

Van Allen Probes

The complex nature of storm-time ion dynamics: Transport and local acceleration

Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained ...

Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070878

plasmasheet; Van Allen Probes

Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed ...

Xia, Zhiyang; Chen, Lunjin; Dai, Lei; Claudepierre, Seth; Chan, Anthony; Soto-Chavez, A.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070280

chorus modulation; inner magnetosphere; ULF wave; Van Allen Probes; whistler wave

The permeability of the magnetopause to a multispecies substorm injection of energetic particles

Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth\textquoterights magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mech ...

Westlake, J.; Cohen, I.; Mauk, B.; Anderson, B.; Mitchell, D.; Gkioulidou, M.; Walsh, B.; Lanzerotti, L.; Strangeway, R.; Russell, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070189

energetic particles; magnetopause; magnetosheath; MMSEPD; Van Allen Probes

The permeability of the magnetopause to a multispecies substorm injection of energetic particles

Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth\textquoterights magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mech ...

Westlake, J.; Cohen, I.; Mauk, B.; Anderson, B.; Mitchell, D.; Gkioulidou, M.; Walsh, B.; Lanzerotti, L.; Strangeway, R.; Russell, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070189

energetic particles; magnetopause; magnetosheath; MMSEPD; Van Allen Probes

Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event

Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the presen ...

Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022517

Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes

RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm

Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using L and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Al ...

Jordanova, V.; Tu, W.; Chen, Y.; Morley, S.; Panaitescu, A.-D.; Reeves, G.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022470

Geomagnetic storms; inner magnetosphere; Van Allen Probes

Wave-driven gradual loss of energetic electrons in the slot region

Resonant pitch angle scattering by plasmaspheric hiss has long been considered to be responsible for the energetic electron loss in the slot region, but the detailed quantitative comparison between theory and observations is still lacking. Here we focus on the loss of 100\textendash600 keV electrons at L = 3 during the recovery phase of a geomagnetic storm on 28 June 2013. Van Allen Probes data showed the concurrence of intense (with power up to 10-4 nT2/Hz) plasmaspheric hiss waves and significant (up to 1 order) loss of en ...

He, Zhaoguo; Yan, Qi; Chu, Yuchuan; Cao, Yong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA023087

electron loss; energetic electron; Plasmaspheric Hiss; Slot region; Van Allen Probes; Wave-particle interaction

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially ...

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

Propagation of ULF waves from the upstream region to the midnight sector of the inner magnetosphere

Ultralow frequency (ULF) waves generated in the ion foreshock are a well-known source of Pc3-Pc4 waves (7\textendash100 mHz) observed in the dayside magnetosphere. We use data acquired on 10 April 2013 by multiple spacecraft to demonstrate that ULF waves of upstream origin can propagate to the midnight sector of the inner magnetosphere. At 1130\textendash1730 UT on the selected day, the two Van Allen Probes spacecraft and the geostationary ETS-VIII satellite detected compressional 20 to 40 mHz magnetic field oscillations bet ...

Takahashi, Kazue; Hartinger, Michael; Malaspina, David; Smith, Charles; Koga, Kiyokazu; Singer, Howard; ühauff, Dennis; Baishev, Dmitry; Moiseev, Alexey; Yoshikawa, Akimasa;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022958

midnight sector; Pc3 waves; plasmasphere; upstream waves; Van Allen Probes

The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes

Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by ...

Yue, Chao; An, Xin; Bortnik, Jacob; Ma, Qianli; Li, Wen; Thorne, Richard; Reeves, Geoffrey; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070084

beta parallel; electron temperature anisotropy; marginally stable state; oblique waves; quasi-parallel waves; Van Allen Probes; whistler mode chorus waves

Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere

We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22\textendash23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolut ...

Keika, Kunihiro; Seki, Kanako; e, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022384

adiabatic transport from the plasma sheet; oxygen ions of ionospheric origin; preconditions of magnetic storms; preexisting oxygen ions trapped in the inner magnetosphere; Van Allen Probes; Van Allen Probes RBSPICE observations

Direct evidence for EMIC wave scattering of relativistic electrons in space

Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, wh ...

Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022521

electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simu ...

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L < 6.6

We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5\textendash6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close ...

e, M.; Keika, K.; Kletzing, C.; Spence, H.; Smith, C.; MacDowall, R.; Reeves, G.; Larsen, B.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022549

Dipolarization; inner magnetosphere; ionospheric outflow; Magnetic Fluctuation; O+ Acceleration; substorm; Van Allen Probes

Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm

Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF ...

Foster, J.; Erickson, P.; Baker, D.; Jaynes, A.; Mishin, E.; Fennel, J.; Li, X.; Henderson, M.; Kanekal, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022509

barrier; Plasmapause; storm; Van Allen Probes; VLF

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnet ...

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

Published by: Geophysical Research Letters      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes

Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA\textquoterights Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few a ...

Zhelavskaya, I.; Spasojevic, M.; Shprits, Y; Kurth, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022132

electron number density; neural networks; Van Allen Probes

The Source of O + in the Storm-time Ring Current

A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer, and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, t ...

Kistler, L.M.; Mouikis, C.; Spence, H.E.; Menz, A.M.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; Lanzerotti, L.J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022204

Geomagnetic storm; Ionosphere; oxygen; plasma sheet; Plasma Sources; ring current; Van Allen Probes

Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study

Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect ...

He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022483

combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes

Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes

The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observ ...

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J.; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022366

chorus waves; Plasmaspheric Hiss; RBSP results; Van Allen Probes

Reproducing the observed energy-dependent structure of Earth s electron radiation belts during storm recovery with an event-specific diffusion model

We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to t ...

Ripoll, J.; Reeves, G.; Cunningham, G.; Loridan, V.; Denton, M.; ik, O.; Kurth, W.; Kletzing, C.; Turner, D.; Henderson, M.; Ukhorskiy, A;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL068869

electron lifetimes; electron losses; hiss waves; Radiation belts; Slot region; Van Allen Probes; wave particle interactions

Simulation of energy-dependent electron diffusion processes in the Earth\textquoterights outer radiation belt

The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth\textquoterights radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the M ...

Ma, Q.; Li, W.; Thorne, R.; Nishimura, Y.; Zhang, X.-J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022507

electron acceleration and loss; energy-dependent diffusion; radial diffusion; radiation belt simulation; Van Allen Probes

A statistical study of proton pitch angle distributions measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

A statistical study of ring current-energy proton pitch angle distributions (PADs) in Earth\textquoterights inner magnetosphere is reported here. The data are from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the Van Allen Probe B spacecraft from January 1, 2013 to April 15, 2015. By fitting the data to the functional form sinnα, where α is the proton pitch angle, we examine proton PADs at the energies 50, 100, 180, 328 and 488 keV in the L-shell range from L = 2.5 to L = 6. Three PAD types ...

Shi, Run; Summers, Danny; Ni, Binbin; Manweiler, Jerry; Mitchell, Donald; Lanzerotti, Louis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022140

proton pitch angle distributions; Van Allen Probes



  3      4      5      6      7      8