Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 435 entries in the Bibliography.
Showing entries from 201 through 250
2017 |
Acceleration at Dipolarization Fronts in the Inner Magnetosphere During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds keV. Plasma pressure is the source of global storm-time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fronts ... Ukhorskiy, A; Sitnov, M.; Merkin, V.; Gkioulidou, M.; Mitchell, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016ja023304 |
2016 |
Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two s ... Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071728 AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes |
Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results s ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071158 EMIC waves; magnetic storm; outer radiation belt; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results s ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071158 EMIC waves; magnetic storm; outer radiation belt; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
Transitional behavior of different energy protons based on Van Allen Probes observations Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here, we statistically analyze ~1 eV to 50 keV Hydrogen (H+) differential flu ... Yue, Chao; Bortnik, Jacob; Chen, Lunjin; Ma, Qianli; Thorne, Richard; Reeves, Geoffrey; Spence, Harlan; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071324 |
We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultra-low frequency (ULF) waves on October 29, 2013. Oscillations in electron flux were observed at the period of \~450s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from ... Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, John; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016GL071252 drift-resonance; injection; PSD gradient; ULF waves; Van Allen Probes |
Characteristic energy range of electron scattering due to plasmaspheric hiss We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to th ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016JA023311 electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation |
Characteristic energy range of electron scattering due to plasmaspheric hiss We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth\textquoterights inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth\textquoterights outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to th ... Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016JA023311 electron flux decay; pitch angle scattering; Plasmaspheric Hiss; Van Allen Probes; Van Allen Probes observation |
The complex nature of storm-time ion dynamics: Transport and local acceleration Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained ... Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016GL070878 |
Hiss or Equatorial Noise? Ambiguities in Analyzing Suprathermal Ion Plasma Wave Resonance Previous studies have shown that low energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined there was a depletion in the 1-10 eV ion population in the post-midnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions between 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves rangin ... Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; ik, Ondrej; Morley, Steven; Breneman, Aaron; Larsen, Brian; Reeves, Geoff; Wygant, John; Hospodarsky, George; Kletzing, Craig; Moldwin, Mark; Katus, Roxanne; Zou, Shasha; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022975 equatorial noise; Low Energy Ions; plasma waves; plasmasphere; Plasmaspheric Hiss; Van Allen Probes |
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In thi ... Yu, Yiqun; Jordanova, Vania; Ridley, Aaron; Albert, Jay; Horne, Richard; Jeffery, Christopher; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022585 Diffusion Coefficient; electron lifetime; electron precipitation; ionospheric conductivity; MI coupling; Van Allen Probes; wave-particle interactions |
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the presen ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022517 Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes |
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth\textquoterights outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the presen ... Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022517 Drift shell splitting; dropouts; magnetic storm; magnetopause shadowing; outer radiation belt; relativistic electron loss; Van Allen Probes |
Unraveling the excitation mechanisms of highly oblique lower band chorus waves Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth\textquoterights magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first ... Li, W.; Mourenas, D.; Artemyev, A.; Bortnik, J.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Funsten, H.; Spence, H.; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/grl.v43.1710.1002/2016GL070386 beam instability; lower band chorus; oblique chorus excitation; temperature anisotropy; Van Allen Probes |
Unraveling the excitation mechanisms of highly oblique lower band chorus waves Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth\textquoterights magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first ... Li, W.; Mourenas, D.; Artemyev, A.; Bortnik, J.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Funsten, H.; Spence, H.; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/grl.v43.1710.1002/2016GL070386 beam instability; lower band chorus; oblique chorus excitation; temperature anisotropy; Van Allen Probes |
Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward IMF quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the pl ... Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Shin, D.-K.; Hwang, J.; Kim, K.-C.; Lee, J.; Choi, C.; Thaller, S.; Skoug, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022841 |
Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward IMF quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the pl ... Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Shin, D.-K.; Hwang, J.; Kim, K.-C.; Lee, J.; Choi, C.; Thaller, S.; Skoug, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016JA022841 |
We present results of a detailed analysis of two electromagnetic wave events observed in the inner magnetosphere at frequencies of a few kilohertz, which exhibit a quasiperiodic (QP) time modulation of the wave intensity. The events were observed by the Cluster and Van Allen Probes spacecraft and in one event also by the THEMIS E spacecraft. The spacecraft were significantly separated in magnetic local time, demonstrating a huge azimuthal extent of the events. Geomagnetic conditions at the times of the observations were very ... emec, F.; Hospodarsky, G.; Pickett, J.; ik, O.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA022774 |
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, w ... Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.; Published by: Geophysical Research Letters Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016GL070008 fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions |
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, w ... Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.; Published by: Geophysical Research Letters Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016GL070008 fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions |
Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by ... Yue, Chao; An, Xin; Bortnik, Jacob; Ma, Qianli; Li, Wen; Thorne, Richard; Reeves, Geoffrey; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016GL070084 beta parallel; electron temperature anisotropy; marginally stable state; oblique waves; quasi-parallel waves; Van Allen Probes; whistler mode chorus waves |
Direct evidence for EMIC wave scattering of relativistic electrons in space Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, wh ... Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022521 electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
Direct evidence for EMIC wave scattering of relativistic electrons in space Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, wh ... Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.; Reeves, G.; Spence, H.; Blake, J.; Fennell, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022521 electron precipitation; EMIC waves; equatorial pitch angle distribution; Fokker-Planck equation; relativistic electron loss; Van Allen Probes; Wave-particle interaction |
We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04\textendash06 magnetic local time (MLT)), we observ ... Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Keika, Kunihiro; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin; Kletzing, Craig; Hanzelka, Miroslav; ik, Ondrej; Kurth, William; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.610.1002/2015JA022264 conjugate event; propagation; QP; Ray Tracing; time delay; Van Allen Probes; VLF/ELF |
Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave\textendashparticle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion ... Mann, I.; Ozeke, L.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Reeves, G.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.; Published by: Nature Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1038/nphys3799 Astrophysical plasmas; Magnetospheric physics; Van Allen Probes |
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical p ... Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.610.1002/2016JA022400 chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes |
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical p ... Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.610.1002/2016JA022400 chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes |
Interactions between interplanetary (IP) shocks and the Earth\textquoterights magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, assoc ... Yue, Chao; Li, Wen; Nishimura, Yukitoshi; Zong, Qiugang; Ma, Qianli; Bortnik, Jacob; Thorne, Richard; Reeves, Geoffrey; Spence, Harlan; Kletzing, Craig; Wygant, John; Nicolls, Michael; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/2016JA022808 adiabatic accelerations; enhancement of low-energy ion flux; ionospheric ion outflows; response to IP shocks; Van Allen Probes |
Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect ... He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022483 combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes |
Compressional ULF wave modulation of energetic particles in the inner magnetosphere We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional mag ... Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022706 Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes |
Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at \~1MeV and more than 80\% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or \textquotedblleftdropout echoes\textquotedblright, constitute a new phenomenon referred to as a \textquotedblleftdrifting electron dropout\textquotedblrig ... Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Yuan, C.-J.; T. Y. Lui, A.; Spence, H.; Blake, J.; Baker, D.; Reeves, G.; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL069140 Drift shell splitting; electron dropout echo; energetic particle; interplanetary shock; magnetopause shadowing; solar wind-magnetospheric coupling; Van Allen Probes |
Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observ ... Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J.; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022366 chorus waves; Plasmaspheric Hiss; RBSP results; Van Allen Probes |
New Chorus Wave Properties Near the Equator from Van Allen Probes Wave Observations The chorus wave properties are evaluated using Van Allen Probes data in the Earth\textquoterights equatorial magnetosphere. Two distinct modes of lower band chorus are identified: a quasi-parallel mode and a quasi-electrostatic mode, whose wave normal direction is close to the resonance cone. Statistical results indicate that the quasi-electrostatic (quasi-parallel) mode preferentially occurs during relatively quiet (disturbed) geomagnetic activity at lower (higher) L shells. Although the magnetic intensity of the quasi-elec ... Li, W.; Santolik, O.; Bortnik, J.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL068780 Chorus wave; oblique; quasi-electrostatic; quasi-parallel; Van Allen Probes; wave normal angles |
New Chorus Wave Properties Near the Equator from Van Allen Probes Wave Observations The chorus wave properties are evaluated using Van Allen Probes data in the Earth\textquoterights equatorial magnetosphere. Two distinct modes of lower band chorus are identified: a quasi-parallel mode and a quasi-electrostatic mode, whose wave normal direction is close to the resonance cone. Statistical results indicate that the quasi-electrostatic (quasi-parallel) mode preferentially occurs during relatively quiet (disturbed) geomagnetic activity at lower (higher) L shells. Although the magnetic intensity of the quasi-elec ... Li, W.; Santolik, O.; Bortnik, J.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL068780 Chorus wave; oblique; quasi-electrostatic; quasi-parallel; Van Allen Probes; wave normal angles |
We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to t ... Ripoll, J.; Reeves, G.; Cunningham, G.; Loridan, V.; Denton, M.; ik, O.; Kurth, W.; Kletzing, C.; Turner, D.; Henderson, M.; Ukhorskiy, A; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL068869 electron lifetimes; electron losses; hiss waves; Radiation belts; Slot region; Van Allen Probes; wave particle interactions |
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth\textquoterights radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the M ... Ma, Q.; Li, W.; Thorne, R.; Nishimura, Y.; Zhang, X.-J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022507 electron acceleration and loss; energy-dependent diffusion; radial diffusion; radiation belt simulation; Van Allen Probes |
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth\textquoterights radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the M ... Ma, Q.; Li, W.; Thorne, R.; Nishimura, Y.; Zhang, X.-J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022507 electron acceleration and loss; energy-dependent diffusion; radial diffusion; radiation belt simulation; Van Allen Probes |
Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to theSYM-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of SYM-H index, the high-energy component (>100 keV) va ... Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL068013 energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes |
Structure and Evolution of Electron "Zebra Stripes" in the Inner Radiation Belt Zebra stripes\textquotedblright are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that t ... Liu, Y.; Zong, Q.-G.; Zhou, X.-Z.; Foster, J.; Rankin, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2015JA022077 electric field; energetic electrons; particle dynamic; Radiation belt; Van Allen Probes; zebra stripes |
Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantl ... Hartley, D.; Kletzing, C.; Kurth, W.; Bounds, S.; Averkamp, T.; Hospodarsky, G.; Wygant, J.; Bonnell, J.; ik, O.; Watt, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022501 EFW; EMFISIS; Plasmaspheric Hiss; sheath impedance; Van Allen Probes; whistler mode chorus |
Electron butterfly distribution modulation by magnetosonic waves The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90\textdegree. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. ... Maldonado, Armando; Chen, Lunjin; Claudepierre, Seth; Bortnik, Jacob; Thorne, Richard; Spence, Harlan; Published by: Geophysical Research Letters Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016GL068161 butterfly; electron; magnetosonic; Magnetosphere; Van Allen Probes; wave particle interaction |
Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been ... Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny; Published by: Geophysical Research Letters Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016GL067853 butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes |
Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been ... Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny; Published by: Geophysical Research Letters Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016GL067853 butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes |
The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6\textendash3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnet ... Li, Jinxing; Bortnik, Jacob; Thorne, Richard; Li, Wen; Ma, Qianli; Baker, Daniel; Reeves, Geoffrey; Fennell, Joseph; Spence, Harlan; Kletzing, Craig; Kurth, William; Hospodarsky, George; Angelopoulos, Vassilis; Blake, Bernard.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016JA022370 butterfly distributions; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes |
The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6\textendash3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnet ... Li, Jinxing; Bortnik, Jacob; Thorne, Richard; Li, Wen; Ma, Qianli; Baker, Daniel; Reeves, Geoffrey; Fennell, Joseph; Spence, Harlan; Kletzing, Craig; Kurth, William; Hospodarsky, George; Angelopoulos, Vassilis; Blake, Bernard.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2016 YEAR: 2016   DOI: 10.1002/2016JA022370 butterfly distributions; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes |
Ultralow frequency (ULF) electromagnetic waves in Earth\textquoterights magnetosphere can accelerate charged particles via a process called drift resonance. In the conventional drift-resonance theory, a default assumption is that the wave growth rate is time-independent, positive, and extremely small. However, this is not the case for ULF waves in the real magnetosphere. The ULF waves must have experienced an earlier growth stage when their energy was taken from external and/or internal sources, and as time proceeds the wave ... Zhou, Xu-Zhi; Wang, Zi-Han; Zong, Qiu-Gang; Rankin, Robert; Kivelson, Margaret; Chen, Xing-Ran; Blake, Bernard; Wygant, John; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2016 YEAR: 2016   DOI: 10.1002/2016JA022447 drift resonance; Radiation belt; ULF waves; Van Allen Probes; wave growth and damping; Wave-particle interaction |
Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the mos ... Zheng, Hao; Holzworth, Robert; Brundell, James; Jacobson, Abram; Wygant, John; Hospodarsky, George; Mozer, Forrest; Bonnell, John; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2016 YEAR: 2016   DOI: 10.1002/2015JA022010 |
Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the mos ... Zheng, Hao; Holzworth, Robert; Brundell, James; Jacobson, Abram; Wygant, John; Hospodarsky, George; Mozer, Forrest; Bonnell, John; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2016 YEAR: 2016   DOI: 10.1002/2015JA022010 |
Our investigation of the long-term ring current proton pressure evolution in Earth\textquoterights inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to the Sym-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of Sym-H index, the high-energy component (>100 keV) v ... Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Lanzerotti, L.; Published by: Geophysical Research Letters Published on: 03/2016 YEAR: 2016   DOI: 10.1002/2016GL068013 energy budget; Geomagnetic storms; inner magnetosphere; ring current; Van Allen Probes |
Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to ele ... Sarno-Smith, Lois; Larsen, Brian; Skoug, Ruth; Liemohn, Michael; Breneman, Aaron; Wygant, John; Thomsen, Michelle; Published by: Space Weather Published on: 02/2016 YEAR: 2016   DOI: 10.1002/2015SW001345 EFW; HOPE; spacecraft charging; surface charging; Van Allen Probes |