Bibliography



Found 210 entries in the Bibliography.


Showing entries from 201 through 210


2013

An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons

Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, m ...

Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.; Claudepierre, S.; Wygant, J.; Thaller, S.;

YEAR: 2013     DOI: 10.1002/grl.50787

Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local ...

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magneti ...

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly ...

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

2007

Radiation Belt Storm Probes: The Next Generation of Space Weather Forecasting

Reeves, Geoffrey;

YEAR: 2007     DOI: 10.1029/2007SW000341

Van Allen Probes

The energization of relativistic electrons in the outer Van Allen radiation belt

The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth\textquoterights magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (Edouble greater than0.5 MeV) has been particularly difficult to definitively resolve. The traditional expl ...

Chen, Yue; Reeves, Geoffrey; Friedel, Reiner;

YEAR: 2007     DOI: 10.1038/nphys655

Local Acceleration due to Wave-Particle Interaction

2006

Outward radial diffusion driven by losses at magnetopause

Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October\textendashDecember 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at hig ...

. Y. Shprits, Y; Thorne, R.; Friedel, R.; Reeves, G.; Fennell, J.; Baker, D.; Kanekal, S.;

YEAR: 2006     DOI: 10.1029/2006JA011657

Magnetopause Losses

2001

Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991

The great March 1991 magnetic storm and the immediately preceding solar energetic particle event (SEP) were among the largest observed during the past solar cycle, and have been the object of intense study. We investigate here, using data from eight satellites, the very large delayed buildup of relativistic electron flux in the outer zone during a 1.5-day period beginning 2 days after onset of the main phase of this storm. A notable feature of the March storm is the intense substorm activity throughout the period of the rela ...

Ingraham, J.; Cayton, T.; Belian, R.; Christensen, R.; Friedel, R.; Meier, M.; Reeves, G.; Takahashi, K;

YEAR: 2001     DOI: 10.1029/2000JA000458

Substorm Injections

1998

Substorm electron injections: Geosynchronous observations and test particle simulations

We investigate electron acceleration and the flux increases associated with energetic electron injections on the basis of geosynchronous observations and test-electron orbits in the dynamic fields of a three-dimensional MHD simulation of neutral line formation and dipolarization in the magnetotail. This complements an earlier investigation of test protons [Birn et al., 1997b]. In the present paper we consider equatorial orbits only, using the gyrocenter drift approximation. It turns out that this approximation is valid for e ...

Birn, J.; Thomsen, M.; Borovsky, J.; Reeves, G.; McComas, D.; Belian, R.; Hesse, M.;

YEAR: 1998     DOI: 10.1029/97JA02635

Substorm Injections

1997

Multisatellite observations of the outer zone electron variation during the November 3\textendash4, 1993, magnetic storm

The disappearance and reappearance of outer zone energetic electrons during the November 3\textendash4, 1993, magnetic storm is examined utilizing data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Global Positioning System (GPS) series, and the Los Alamos National Laboratory (LANL) sensors onboard geosynchronous satellites. The relativistic electron flux drops during the main phase of the magnetic storm in association with the large negative interplanetary Bz and rapid solar wind pressure inc ...

Li, Xinlin; Baker, D.; Temerin, M.; Cayton, T.; Reeves, E.; Christensen, R.; Blake, J.; Looper, M.; Nakamura, R.; Kanekal, S.;

YEAR: 1997     DOI: 10.1029/97JA01101

Magnetopause Losses



  1      2      3      4      5