Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2758 entries in the Bibliography.


Showing entries from 201 through 250


2021

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To ...

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

Published by: Space Weather      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosph ...

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry using FIREBIRD II and Van Allen Probes Observations

Abstract This study considers the impact of electron precipitation from Earth s radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near-equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015-2017) allow an estimate of precipitation into the atmosph ...

Duderstadt, K.; Huang, C.-L.; Spence, H.; Smith, S.; Blake, J.; Crew, A.; Johnson, A.; Klumpar, D.; Marsh, D.; Sample, J.; Shumko, M.; Vitt, F.;

Published by: Journal of Geophysical Research: Atmospheres      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JD033098

electron precipitation; Radiation belts; ozone; Atmospheric Ionization; Van Allen Probes; FIREBIRD

Pitch Angle Phase Shift in Ring Current Ions Interacting with ULF Waves: Van Allen Probes Observations

Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. ...

Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029025

ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes

Pitch Angle Phase Shift in Ring Current Ions Interacting with ULF Waves: Van Allen Probes Observations

Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. ...

Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029025

ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes

Pitch Angle Phase Shift in Ring Current Ions Interacting with ULF Waves: Van Allen Probes Observations

Abstract Drift-bounce resonance between ultra-low-frequency (ULF) waves and ring current ions has been widely studied, because of its important role in ring current acceleration and relevant geomagnetic activities. To identify drift-bounce resonance in observations, 180° phase shifts across resonant pitch angle have been proposed as diagnostic signatures. This study, however, presents observations that suggest this criterion may be invalid when phase space density (PSD) distributions vary non-monochromatically with energy. ...

Li, Xing-Yu; Liu, Zhi-Yang; Zong, Qiu-Gang; Zhou, Xu-Zhi; Hao, Yi-Xin; Rankin, Robert; Zhang, Xiao-Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029025

ring current; ultra-low-frequency waves; drift-bounce resonance; Van Allen Probes

Generation of realistic short chorus wave packets

Abstract Most lower-band chorus waves observed in the inner magnetosphere propagate under the form of moderately intense short wave packets with fast frequency and phase variations. Therefore, understanding the formation mechanism of such short wave packets is crucial for accurately modelling electron nonlinear acceleration or precipitation into the atmosphere by these waves. We compare chorus wave statistics from the Van Allen Probes with predictions from a simple model of short wave packet generation by wave superposition ...

Nunn, D.; Zhang, X.-J.; Mourenas, D.; Artemyev, A.;

Published by: Geophysical Research Letters      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL092178

chorus waves; Radiation belts; Wave-particle interaction; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electro ...

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

In situ Observations of Whistler-mode Chorus Waves Guided by Density Ducts

Abstract In this paper, we report the proof of the existence of density ducts in the Earth’s magnetosphere by studying in situ observations of whistler-mode chorus waves using NASA’s Van Allen Probe-A data. Chorus waves, originally excited inside the density ducts with wave normal angles (WNAs) smaller than the Gendrin angle at near equator region, are efficiently confined to a limited area inside density ducts (i.e., ducted regions), and remain with small WNAs as they propagate towards high latitudes. The ducted region ...

Chen, Rui; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Tsurutani, Bruce; Li, Wen; Ni, Binbin; Wang, Shui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028814

Radiation belt; Chorus wave; density duct; ducted region; Van Allen Probes

Nodal Structure of Toroidal Standing Alfvén Waves and Its Implication for Field Line Mass Density Distribution

Abstract We have conducted a statistical study of toroidal mode standing Alfvén waves detected by the Van Allen Probes spacecraft in the dayside inner magnetosphere, with an emphasis on the nodal structure of the fundamental through fifth harmonics. We developed a technique to accurately assign harmonic mode numbers to peaks in the power spectra of the electric (Eν) and magnetic (Bϕ) field components of toroidal waves and then determine the spectral intensities of Eν and Bϕ and the coherence and cross-phase between thes ...

Takahashi, Kazue; Denton, Richard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028981

Toroidal Alfven waves; inner magnetosphere; Nodal structure; Field line mass density distribution; Van Allen Probes

ULF Wave Driven Radial Diffusion During Geomagnetic Storms: A statistical analysis of Van Allen Probes observations

Abstract The impact of radial diffusion in storm time radiation belt dynamics is well-debated. In this study we quantify the changes and variability in radial diffusion coefficients during geomagnetic storms. A statistical analysis of Van Allen Probes data (2012 − 2019) is conducted to obtain measurements of the magnetic and electric power spectral densities for Ultra Low Frequency (ULF) waves, and corresponding radial diffusion coefficients. The results show global wave power enhancements occur during the storm main phase ...

Sandhu, J.; Rae, I.; Wygant, J.; Breneman, A.; Tian, S.; Watt, C.; Horne, R.; Ozeke, L.; Georgiou, M.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029024

ULF waves; radial diffusion; outer radiation belt; Van Allen Probes; Geomagnetic storms

ULF Wave Driven Radial Diffusion During Geomagnetic Storms: A statistical analysis of Van Allen Probes observations

Abstract The impact of radial diffusion in storm time radiation belt dynamics is well-debated. In this study we quantify the changes and variability in radial diffusion coefficients during geomagnetic storms. A statistical analysis of Van Allen Probes data (2012 − 2019) is conducted to obtain measurements of the magnetic and electric power spectral densities for Ultra Low Frequency (ULF) waves, and corresponding radial diffusion coefficients. The results show global wave power enhancements occur during the storm main phase ...

Sandhu, J.; Rae, I.; Wygant, J.; Breneman, A.; Tian, S.; Watt, C.; Horne, R.; Ozeke, L.; Georgiou, M.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029024

ULF waves; radial diffusion; outer radiation belt; Van Allen Probes; Geomagnetic storms

ULF Wave Driven Radial Diffusion During Geomagnetic Storms: A statistical analysis of Van Allen Probes observations

Abstract The impact of radial diffusion in storm time radiation belt dynamics is well-debated. In this study we quantify the changes and variability in radial diffusion coefficients during geomagnetic storms. A statistical analysis of Van Allen Probes data (2012 − 2019) is conducted to obtain measurements of the magnetic and electric power spectral densities for Ultra Low Frequency (ULF) waves, and corresponding radial diffusion coefficients. The results show global wave power enhancements occur during the storm main phase ...

Sandhu, J.; Rae, I.; Wygant, J.; Breneman, A.; Tian, S.; Watt, C.; Horne, R.; Ozeke, L.; Georgiou, M.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029024

ULF waves; radial diffusion; outer radiation belt; Van Allen Probes; Geomagnetic storms

Van Allen probe observations of disappearance, recovery and patchiness of plasmaspheric hiss following two consecutive interplanetary shocks: First results

Abstract We present, for the first time, a plasmaspheric hiss event observed by the Van Allen probes in response to two successive interplanetary shocks occurring within an interval of ∼2 hours on December 19, 2015. The first shock arrived at 16:16 UT and caused disappearance of hiss for ∼30 minutes. Combined effect of plasmapause crossing, significant Landau damping by suprathermal electrons and their gradual removal by magnetospheric compression led to the disappearance of hiss. Calculation of electron phase space dens ...

Chakraborty, S.; Chakrabarty, D.; Reeves, G.; Baker, D.; Claudepierre, S.; Breneman, A.; Hartley, D.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028873

Plasmaspheric Hiss; Van Allen Probe; Interplanetary shocks; substorms; Whistlers; ULF waves; Van Allen Probes

Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves

Abstract We report a simultaneous observation of two band electromagnetic ion cyclotron (EMIC) waves and toroidal Alfvén waves by the Van Allen Probe mission. Through wave frequency analyses, the mass density ρ is found to be locally peaked at the magnetic equator. Perpendicular fluxes of ions (< 100 eV) increase simultaneously with the appearances of EMIC waves, indicating a heating of these ions by EMIC waves. In addition, the measured ion distributions also support the equatorial peak formation, which accords with the r ...

Xue, Zuxiang; Yuan, Zhigang; Yu, Xiongdong; Shiyong, Huang; Qiao, Zheng;

Published by: Earth and Planetary Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021008

Toroidal Alfven waves; EMIC waves; magnetoseismology; equatorial mass density peak; Van Allen Probes

Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves

Abstract We report a simultaneous observation of two band electromagnetic ion cyclotron (EMIC) waves and toroidal Alfvén waves by the Van Allen Probe mission. Through wave frequency analyses, the mass density ρ is found to be locally peaked at the magnetic equator. Perpendicular fluxes of ions (< 100 eV) increase simultaneously with the appearances of EMIC waves, indicating a heating of these ions by EMIC waves. In addition, the measured ion distributions also support the equatorial peak formation, which accords with the r ...

Xue, Zuxiang; Yuan, Zhigang; Yu, Xiongdong; Shiyong, Huang; Qiao, Zheng;

Published by: Earth and Planetary Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021008

Toroidal Alfven waves; EMIC waves; magnetoseismology; equatorial mass density peak; Van Allen Probes

Energetic Electron Precipitation Observed by FIREBIRD-II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi-Event Analysis

Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ...

Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.;

Published by: Geophysical Research Letters      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091564

electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes

Energetic Electron Precipitation Observed by FIREBIRD-II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi-Event Analysis

Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ...

Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.;

Published by: Geophysical Research Letters      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091564

electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes

Energetic Electron Precipitation Observed by FIREBIRD-II Potentially Driven by EMIC Waves: Location, Extent, and Energy Range from a Multi-Event Analysis

Abstract We evaluate the location, extent and energy range of electron precipitation driven by ElectroMagnetic Ion Cyclotron (EMIC) waves using coordinated multi-satellite observations from near-equatorial and Low-Earth-Orbit (LEO) missions. Electron precipitation was analyzed using the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD-II) CubeSats, in conjunction either with typical EMIC-driven precipitation signatures observed by Polar Orbiting Environmental Satellites (POES) or ...

Capannolo, L.; Li, W.; Spence, H.; Johnson, A.; Shumko, M.; Sample, J.; Klumpar, D.;

Published by: Geophysical Research Letters      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020GL091564

electron precipitation; EMIC waves; inner magnetosphere; electron losses; proton precipitation; wave-particle interactions; Van Allen Probes

Reconstruction of the Radiation Belts for Solar Cycles 17 – 24 (1933 – 2017)

AbstractWe present a reconstruction of the dynamics of the radiation belts from Solar Cycles 17 – 24 which allows us to study how radiation belt activity has varied between the different solar cycles. The radiation belt simulations are produced using the Versatile Electron Radiation Belt (VERB)-3D code. The VERB-3D code simulations incorporate radial, energy, and pitch angle diffusion to reproduce the radiation belts. Our simulations use the historical measurements of Kp (available since Solar Cycle 17, i.e., 1933) to mode ...

Saikin, A.; Shprits, Y; Drozdov, A; Landis, D.; Zhelavskaya, I.; Cervantes, S.;

Published by: Space Weather      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002524

Radiation belts; numerical modeling; Particle acceleration; Magnetosphere: inner; forecasting; Van Allen Probes

A Case Study of Transversely Heated Low-Energy Helium Ions by EMIC Waves in the Plasmasphere

Abstract The Van Allen Probe A spacecraft observed strong ∼0.5-Hz helium (He+) band and weak ∼0.8-Hz hydrogen (H+) band EMIC waves on April 17, 2018, at L = ∼4.5–5.2, in the dawn sector, near the magnetic equator, and close to the plasmapause. We examined low-energy ion fluxes observed by the Helium Oxygen Proton and Electron (HOPE) instrument onboard Van Allen Probe A during the wave interval and found that low-energy He+ flux (<10 eV) enhancements occur nearly simultaneously with He-band and H-band EMIC wave pow ...

Kim, Khan-Hyuk; Kwon, Hyuck-Jin; Lee, Junhyun; Jin, Ho; Seough, Jungjoon;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028560

Van Allen Probes

A Case Study of Transversely Heated Low-Energy Helium Ions by EMIC Waves in the Plasmasphere

Abstract The Van Allen Probe A spacecraft observed strong ∼0.5-Hz helium (He+) band and weak ∼0.8-Hz hydrogen (H+) band EMIC waves on April 17, 2018, at L = ∼4.5–5.2, in the dawn sector, near the magnetic equator, and close to the plasmapause. We examined low-energy ion fluxes observed by the Helium Oxygen Proton and Electron (HOPE) instrument onboard Van Allen Probe A during the wave interval and found that low-energy He+ flux (<10 eV) enhancements occur nearly simultaneously with He-band and H-band EMIC wave pow ...

Kim, Khan-Hyuk; Kwon, Hyuck-Jin; Lee, Junhyun; Jin, Ho; Seough, Jungjoon;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028560

Van Allen Probes

Whistlers in the Plasmasphere

Abstract We study packages of VLF whistler-mode waves observed by the Van Allen Probes satellites in the equatorial plasmasphere. We demonstrate that the main mechanism providing localization of these waves inside relatively broad (>1 RE across the ambient magnetic field) magnetospheric regions is a combined effect of the transverse gradients in the plasma density and the ambient magnetic field. The criterion for the wave trapping by these gradients is the same as for the wave trapping inside a high-density duct with a symme ...

Streltsov, Anatoly;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028933

density inhomogeneity; duct; Plasmapause; plasmasphere; VLF waves; whistler; Van Allen Probes

Simulating the Ion Precipitation From the Inner Magnetosphere by H-Band and He-Band Electro Magnetic Ion Cyclotron Waves

Abstract During geomagnetic storms, magnetospheric wave activity drives the ion precipitation which can become an important source of energy flux into the ionosphere and strongly affect the dynamics of the magnetosphere-ionosphere coupling. In this study, we investigate the role of Electro Magnetic Ion Cyclotron (EMIC) waves in causing ion precipitation into the ionosphere using simulations from the RAM-SCBE model with and without EMIC waves included. The global distribution of H-band and He-band EMIC wave intensity in the m ...

Shreedevi, P.; Yu, Yiqun; Ni, Binbin; Saikin, Anthony; Jordanova, Vania;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028553

EMIC waves; Geomagnetic storms; proton precipitation; ring current modeling; MI coupling; wave particle interaction; Van Allen Probes

Effects of the plasmapause on the radial propagation of fast magnetosonic waves: An Analytical Approach

Abstract In this paper, analytical approximation is used to solve the wave equations near the plasmapause boundary layer in order to examine the validity of ray tracing approach for fast magnetosonic (MS) wave propagations, and then analytical solutions for electromagnetic fields of MS waves through the plasmapause boundary layer are provided for the first time. Both theoretical calculations from the analytical expressions and observations of Van Allen Probes have indicated that electric fields of MS waves decrease rapidly b ...

Yu, Xiongdong; Yuan, Zhigang; Ouyang, Zhihai; Yao, Fei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028330

MS waves; Radial propagation; Analytical approach; WKB approximation; Van Allen Probes

Effects of the plasmapause on the radial propagation of fast magnetosonic waves: An Analytical Approach

Abstract In this paper, analytical approximation is used to solve the wave equations near the plasmapause boundary layer in order to examine the validity of ray tracing approach for fast magnetosonic (MS) wave propagations, and then analytical solutions for electromagnetic fields of MS waves through the plasmapause boundary layer are provided for the first time. Both theoretical calculations from the analytical expressions and observations of Van Allen Probes have indicated that electric fields of MS waves decrease rapidly b ...

Yu, Xiongdong; Yuan, Zhigang; Ouyang, Zhihai; Yao, Fei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028330

MS waves; Radial propagation; Analytical approach; WKB approximation; Van Allen Probes

RBSP-ECT Combined Pitch Angle Resolved Electron Flux Data Product

Abstract We describe a new data product combining pitch angle resolved electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration s Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of pitch-angle-resolved spectra for the entire Van Allen Probes mission. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 ...

Boyd, A.J.; Spence, H.E.; Reeves, G.D.; Funsten, H.O; Skoug, R.K.; Larsen, B.A.; Blake, J.B.; Fennell, J.F.; Claudepierre, S.G.; Baker, D.N.; Kanekal, S.K.; Jaynes, A.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028637

Van Allen Probes; Radiation belts; ECT; MAGEis; REPT; HOPE

RBSP-ECT Combined Pitch Angle Resolved Electron Flux Data Product

Abstract We describe a new data product combining pitch angle resolved electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration s Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of pitch-angle-resolved spectra for the entire Van Allen Probes mission. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 ...

Boyd, A.J.; Spence, H.E.; Reeves, G.D.; Funsten, H.O; Skoug, R.K.; Larsen, B.A.; Blake, J.B.; Fennell, J.F.; Claudepierre, S.G.; Baker, D.N.; Kanekal, S.K.; Jaynes, A.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028637

Van Allen Probes; Radiation belts; ECT; MAGEis; REPT; HOPE

Observations of density cavities and associated warm ion flux enhancements in the inner magnetosphere

Abstract We present a statistical study of density cavities observed in the inner magnetosphere by the Van Allen Probes during four one-month periods: February 2013, July 2013, January 2014 and June 2014. These periods were chosen to allow the survey of all magnetic local times. We find that density cavities are a recurrent feature of the density profiles of in situ measurements in the inner magnetosphere. We further investigate the correlation between the density cavities and the enhancement of fluxes of warm ions with ener ...

Ferradas, C.; Boardsen, S.; Fok, M.-C.; Buzulukova, N.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028326

Magnetosphere: inner; plasmasphere; magnetospheric configuration and dynamics; plasma waves and instabilities; plasma sheet; density cavity; cold ion heating; cold ions; warm Plasma cloak; Van Allen Probes

Observations of density cavities and associated warm ion flux enhancements in the inner magnetosphere

Abstract We present a statistical study of density cavities observed in the inner magnetosphere by the Van Allen Probes during four one-month periods: February 2013, July 2013, January 2014 and June 2014. These periods were chosen to allow the survey of all magnetic local times. We find that density cavities are a recurrent feature of the density profiles of in situ measurements in the inner magnetosphere. We further investigate the correlation between the density cavities and the enhancement of fluxes of warm ions with ener ...

Ferradas, C.; Boardsen, S.; Fok, M.-C.; Buzulukova, N.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028326

Magnetosphere: inner; plasmasphere; magnetospheric configuration and dynamics; plasma waves and instabilities; plasma sheet; density cavity; cold ion heating; cold ions; warm Plasma cloak; Van Allen Probes

Observations of density cavities and associated warm ion flux enhancements in the inner magnetosphere

Abstract We present a statistical study of density cavities observed in the inner magnetosphere by the Van Allen Probes during four one-month periods: February 2013, July 2013, January 2014 and June 2014. These periods were chosen to allow the survey of all magnetic local times. We find that density cavities are a recurrent feature of the density profiles of in situ measurements in the inner magnetosphere. We further investigate the correlation between the density cavities and the enhancement of fluxes of warm ions with ener ...

Ferradas, C.; Boardsen, S.; Fok, M.-C.; Buzulukova, N.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028326

Magnetosphere: inner; plasmasphere; magnetospheric configuration and dynamics; plasma waves and instabilities; plasma sheet; density cavity; cold ion heating; cold ions; warm Plasma cloak; Van Allen Probes

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of de ...

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase



  3      4      5      6      7      8