Found 787 entries in the Bibliography.

Showing entries from 201 through 250


The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 ...

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we ...

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. F ...

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen ...

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites

The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21\textendash29 June 2015 was investigated using high-resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more fr ...

Wang, Hui; He, Yangfan; ühr, Hermann; Kistler, Lynn; Saikin, Anthony; Lund, Eric; Ma, Shuying;

YEAR: 2019     DOI: 10.1029/2018JA026299

EMIC wave; storm; substorm; Swarm; Van Allen Probes


Response of banded whistler-mode waves to the enhancement of solar wind dynamic pressure in the inner Earth\textquoterights magnetosphere

With observations of Van Allen Probe A, in this letter we display a typical event where banded whistler waves shifted up their frequencies with frequency bands broadening as a response to the enhancement of solar wind dynamic pressure. Meanwhile, the anisotropy of electrons with energies about several tens of keV was observed to increase. Through the comparison of the calculated wave growth rates and observed wave spectral intensity, we suggest that those banded whistler waves observed with frequencies shifted up and frequen ...

Yu, Xiongdong; Yuan, Zhigang; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yao, Fei; Funsten, H.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018GL078849

Banded whistler-mode waves; Frequency properties; inner magnetosphere; solar wind dynamic pressure; Van Allen Probes

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle ...

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; . Y. Drozdov, A; Villa, J.; . Y. Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; . Y. Ukhorskiy, A;

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations ...

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves

Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit

Variations in the high-energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower-energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low-altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured ...

Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio;

YEAR: 2018     DOI: 10.1029/2018JA025786

electrons; integral flux; Radiation belts; seed population; Van Allen Probes

Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction

Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2-D particle-in-cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters ...

Min, Kyungguk; Boardsen, Scott; Denton, Richard; Liu, Kaijun;

YEAR: 2018     DOI: 10.1029/2018JA026037

2D particle-in-cell simulation; Fast Magnetosonic Waves; Perpendicular propagation; Van Allen Probes

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ...

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

Precipitation of radiation belt electrons by EMIC waves with conjugated observations of NOAA and Van Allen satellites

In this letter, we present unique conjugated satellite observations of MeV relativistic electron precipitation caused by electromagnetic ion cyclotron (EMIC) waves. On the outer boundary of the plasmasphere, the Van Allen probe observed EMIC waves. At ionospheric altitudes, the NOAA 16 satellite at the footprint of Van Allen probe simultaneously detected obvious flux enhancements for precipitating >MeV radiation belt electrons, but not for precipitating

Yuan, Zhigang; Liu, Kun; Yu, Xiongdong; Yao, Fei; Huang, Shiyong; Wang, Dedong; Ouyang, Zhihai;

YEAR: 2018     DOI: 10.1029/2018GL080481

Chorus; EMIC waves; Particle precipitation; Radiation belt; ring current; Van Allen Probes; Wave-particle interaction

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ...

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Simulations of Van Allen Probes Plasmaspheric Electron Density Observations

We simulate equatorial plasmaspheric electron densities using a physics-based model (Cold PLasma, CPL; used in the ring current-atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, resp ...

De Pascuale, S.; Jordanova, V.; Goldstein, J.; Kletzing, C.; Kurth, W.; Thaller, S.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018JA025776

convection; observations; plasmasphere; RBSP; simulation; Van Allen Probes

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location ...

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolut ...

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements

Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch-angle anisotropies. The ratio of the number o ...

Zhu, Hui; Shprits, Yuri; Chen, Lunjin; Liu, Xu; Kellerman, Adam;

YEAR: 2018     DOI: 10.1029/2017JA025023

electromagnetic waves; Exohiss; linear theory; Radiation belts; Van Allen Probes

Fine structure of whistler-mode hiss in plasmaspheric plumes observed by the Van Allen Probes

We survey 3 years (2013-2015) of data from the Van Allen Probes related to plasmaspheric plume crossing events. We detect 194 plume crossing events, and we find that 97\% of the plumes are accompanied by VLF hiss emissions. The plumes are mainly detected on the duskside or dayside. Careful examination of the hiss spectra reveals that all hiss emissions consist of obvious fine structure. Application of a band pass filter reveals that the fine structure is consistent with the occurrence of discrete wave packets. The hiss data ...

Nakamura, S.; Omura, Y.; Summers, D.;

YEAR: 2018     DOI: 10.1029/2018JA025803

fine structure; hiss; nonlinear; plasmaspheric plume; Van Allen Probes

Generation of EMIC Waves Observed by Van Allen Probes at Low L Shells

Observation of linearly polarized He+-band electromagnetic ion cyclotron (EMIC) waves at low L shells is a new, and quite unexpected, result from the Van Allen Probes mission. Here we analyze the two EMIC wave events observed by Van Allen Probes at low L shells and put forward a new-generation mechanism for the low-L EMIC waves. Both events were observed at L \~ 3 but one of them has a discrete spectrum near the O+ gyrofrequency and its second harmonic, whereas the second event has a broad spectrum between the O+ gyrofrequen ...

Gamayunov, Konstantin; Min, Kyungguk; Saikin, Anthony; Rassoul, Hamid;

YEAR: 2018     DOI: 10.1029/2018JA025629

effects of wave superposition on EMIC waves; EMIC wave generation; EMIC waves at low L shells; growth rate calculations for EMIC waves; polarization properties of EMIC waves; Van Allen Probes; Van Allen Probes observations at low L shells

High-frequency thermal fluctuations and instabilities in the radiation belt environment

This paper overviews the electrostatic and electromagnetic theories of spontaneous emission in magnetized plasma as they relate to measured electric and magnetic field fluctuations in quiet time radiation belt and ring current region. The pervasively detected high-frequency fluctuations in the upper-hybrid frequency range as well as the background low-frequency range spectral profile in the whistler mode range are explained within the context of the spontaneous emission theory. The quasilinear calculation of loss-cone instab ...

Hwang, Junga; Yoon, Peter;

YEAR: 2018     DOI: 10.1029/2018JA025643

loss cone instability; Radiation belt; spontaneous emission; upper hybrid wave; Van Allen Probes

Impact of Background Magnetic Field for EMIC Wave-Driven Electron Precipitation

Wave-particle interaction between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves is a highly debated loss process contributing to the dynamics of Earth\textquoterights radiation belts. Theoretical studies show that EMIC waves can result in strong loss of relativistic electrons in the radiation belts (Summers \& Thorne, 2003, However, many of these studies have not been validated by observations. Li et al. (2014, modeled the re ...

Woodger, L.; Millan, R.; Li, Z.; Sample, J.;

YEAR: 2018     DOI: 10.1029/2018JA025315

electron precipitation; EMIC waves; Radiation belts; Van Allen Probes

On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when c ...

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ...

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Pitch Angle Scattering of Energetic Electrons by BBFs

Field line curvature scattering by the magnetic field structure associated with bursty bulk flows (BBFs) has been studied, using simulated output fields from the Lyon-Fedder-Mobarry global magnetohydrodynamic code for specified solar wind input. There are weak magnetic field strength (B) regions adjacent to BBFs observed in the simulations. We show that these regions can cause strong scattering where the first adiabatic invariant changes by several factors within one equatorial crossing of energetic electrons of a few kiloel ...

Eshetu, W.; Lyon, J.; Hudson, M.; Wiltberger, M.;

YEAR: 2018     DOI: 10.1029/2018JA025788

Van Allen Probes

Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft

Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed near ...

emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.;

YEAR: 2018     DOI: 10.1029/2018JA026058

EMFISIS; QP emissions; quasiperiodic; Van Allen Probes

Combined Scattering of Outer Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic Waves

We report a typical event that fast magnetosonic (MS) waves, exohiss, and two-band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2-D Fokker-Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS w ...

Hua, Man; Ni, Binbin; Fu, Song; Gu, Xudong; Xiang, Zheng; Cao, Xing; Zhang, Wenxun; He, Ying; Huang, He; Lou, Yuequn; Zhang, Yang;

YEAR: 2018     DOI: 10.1029/2018GL079533

Combined scattering effect; diffusion simulations; Exohiss; magnetosonic waves; resonant wave-particle interactions; two-band chorus waves; Van Allen Probes

Eigenmodes of the transverse Alfv\ enic resonator at the plasmapause: a Van Allen Probes case study

A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfv\ en velocity. In addition, the observed wave was in a drift resonance with energetic 8 ...

Mager, Pavel; Mikhailova, Olga; Mager, Olga; Klimushkin, Dmitri;

YEAR: 2018     DOI: 10.1029/2018GL079596

Magnetosphere; Plasmapause; poloidal Alfven waves; transverse resonator; ULF waves; Van Allen Probes; Wave-particle interaction

Energisation of the ring current by substorms

The substorm process releases large amounts of energy into the magnetospheric system, although where the energy is transferred to and how it is partitioned remains an open question. In this study, we address whether the substorm process contributes a significant amount of energy to the ring current. The ring current is a highly variable region, and understanding the energisation processes provides valuable insight into how substorm - ring current coupling may contribute to the generation of storm conditions and provide a sou ...

Sandhu, J.; Rae, I.; Freeman, M.; Forsyth, C.; Gkioulidou, M.; Reeves, G.; Spence, H.; Jackman, C.; Lam, M.;

YEAR: 2018     DOI: 10.1029/2018JA025766

BSPICE; HOPE; Magnetosphere; ring current; substorms; Van Allen Probes

Evolution of electron distribution driven by nonlinear resonances with intense field-aligned chorus waves

Resonant electron interaction with whistler-mode chorus waves is recognized as one of the main drivers of radiation belt dynamics. For moderate wave intensity, this interaction is well described by quasi-linear theory. However, recent statistics of parallel propagating chorus waves have demonstrated that 5 - 20\% of the observed waves are sufficiently intense to interact nonlinearly with electrons. Such interactions include phase trapping and phase bunching (nonlinear scattering) effects not described by quasi-linear diffusi ...

Vainchtein, D.; Zhang, X.-J.; Artemyev, A.; Mourenas, D.; Angelopoulos, V.; Thorne, R.;

YEAR: 2018     DOI: 10.1029/2018JA025654

Van Allen Probes

Fast diffusion of ultra-relativistic electrons in the outer radiation belt: 17 March 2015 storm event

Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event-specific and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultra-relativisti ...

Jaynes, A.; Ali, A.; Elkington, S.; Malaspina, D.; Baker, D.; Li, X.; Kanekal, S.; Henderson, M.; Kletzing, C.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018GL079786

Magnetosphere; radial diffusion; Radiation belts; ULF waves; Van Allen Probes

Five Year Results from the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission

The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of Earth\textquoterights Van Allen radiation belts. Over five years, results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data and a comparison of cumulative dose to pre-launch modeling. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates. The Solar Cell ...

Maurer, R.; Goldsten, J.; Butler, M.; Fretz, K.;

YEAR: 2018     DOI: 10.1029/2018SW001910

Van Allen Probes

Generation of lower L -shell dayside chorus by energetic electrons from the plasmasheet

Currently, the generation mechanism for the lower L-shell dayside chorus has still remained an open question. Here, we report two storm events: 06-07 March 2016 and 20-21 January 2016, when Van Allen Probes observed enhanced dayside chorus with lower and higher wave normal angles (the angles between the wave vector and the geomagnetic field) in the region of L = 3.5-6.3 and MLT = 5.6-13.5. Hot and energetic (\~ 1-100 keV) electrons displayed enhancements in fluxes and anisotropy when they were injected from the plasmasheet a ...

He, Yihua; Xiao, Fuliang; Su, Zhenpeng; Zheng, Huinan; Yang, Chang; Liu, Si; Zhou, Qinghua;

YEAR: 2018     DOI: 10.1029/2017JA024889

Dayside chorus generation; Radiation belt; Van Allen Probes; Wave-particle interaction

Global distribution of proton rings and associated magnetosonic wave instability in the inner magnetosphere

Using the Van Allen Probe A observations, we obtained the global distribution of proton rings and calculated the linear wave growth rate of fast magnetosonic (MS) waves in the region L ~ 3-6. Our statistical and calculated results demonstrate that MS waves can be locally excited on the dayside outside the plasmapause, as well as in the dusk sector inside the plasmapause. The frequency range of unstable MS waves is strongly modulated by the ratio of the proton ring velocity (Vr) to the local Alfv\ en speed (VA). High harmonic ...

Yuan, Zhigang; Ouyang, Zhihai; Yu, Xiongdong; Huang, Shiyong; Yao, Fei; Funsten, H.;

YEAR: 2018     DOI: 10.1029/2018GL079999

Fast Magnetosonic Waves; linear growth rates; locally excited; low harmonic magnetosonic waves; Proton rings; Van Allen Probes

MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock

The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well-defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, ...

Engebretson, M.; Posch, J.; Capman, N.; Campuzano, N.; elik, P.; Allen, R.; Vines, S.; Anderson, B.; Tian, S.; Cattell, C.; Wygant, J.; Fuselier, S.; Argall, M.; Lessard, M.; Torbert, R.; Moldwin, M.; Hartinger, M.; Kim, H.; Russell, C.; Kletzing, C.; Reeves, G.; Singer, H.;

YEAR: 2018     DOI: 10.1029/2018JA025984

Van Allen Probes

Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves

A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfv\ enic fluctuations and multi-timescale modulation of enhanced atmospheric X-ray bremsstrahlung emission. The properties of the Alfv\ enic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro-radii scale field structures. It is shown that this scattering may lead to the transport ...

Chaston, C.; Bonnell, J.; Halford, A.; Reeves, G.; Baker, D.; Kletzing, C.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018GL079527

Alfven waves; drift-bounce resonance; energetic particles; Geomagnetic storms; pitch-angle scattering; Radiation belts; Van Allen Probes

The Response of the Energy Content of the Outer Electron Radiation Belt to Geomagnetic Storms

Using the data from the Van Allen Probe-A spacecraft, the variability of the total outer radiation belt (2.5300 keV) is investigated for the first time during 51 isolated storms spanning from October 2012 to May 2017. The statistical results show that the TRBEEC exhibits no-change in 20\% of the storms and gets enhanced during 80\% of them. The sub-relativistic electrons (300-500 keV) and relativistic electrons (0.5-2.0 MeV) equally contribute to the TRBEEC du ...

Xiong, Ying; Xie, Lun; Chen, Lunjin; Ni, Binbin; Fu, Suiyan; Pu, Zuyin;

YEAR: 2018     DOI: 10.1029/2018JA025475

Chorus wave; energetic particles; energy content; magnetic storm; outer radiation belt; Van Allen Probes

Roles of Flow Braking, Plasmaspheric Virtual Resonances, and Ionospheric Currents in Producing Ground Pi2 Pulsations

In one model, Pi2 pulsations are driven pulse by pulse by fast mode pulses that are launched as periodic bursty bulk flows brake when they approach the Earth. We have examined this model by analyzing data from multiple spacecraft and ground magnetometers for a Pi2 pulsation event. During the event, which started at \~2226 UT on 8 November 2014, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-D detected an \~2 min period plasma bulk flow oscillation in the near-Earth magnetotail, while THEMIS-E an ...

Takahashi, Kazue; Hartinger, Michael; Vellante, Massimo; Heilig, azs; Lysak, Robert; Lee, Dong-Hun; Smith, Charles;

YEAR: 2018     DOI: 10.1029/2018JA025664

Van Allen Probes

Variation in Plasmaspheric Hiss Wave Power With Plasma Density

Plasmaspheric hiss waves are commonly observed in the inner magnetosphere. These waves efficiently scatter electrons, facilitating their precipitation into the atmosphere. Predictive inner magnetosphere simulations often model hiss waves using parameterized empirical maps of observed hiss power. These maps nearly always include parameterization by magnetic L value. In this work, data from the Van Allen Probes are used to compare variation in hiss wave power with variation in both L value and cold plasma density. It is found ...

Malaspina, David; Ripoll, Jean-Francois; Chu, Xiangning; Hospodarsky, George; Wygant, John;

YEAR: 2018     DOI: 10.1029/2018GL078564

inner magnetosphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes; Wave models

Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss

A new method of inferring electron plasma densities inside of the plasmasphere is presented. Utilizing observations of the electric and magnetic field wave power associated with plasmaspheric hiss, coupled with the cold plasma dispersion relation, permits calculation of the plasma density. This methodology yields a density estimate for each frequency channel and time interval where plasmaspheric hiss is observed and is shown to yield results that are generally in agreement with densities determined via other methods. A stati ...

Hartley, D.; Kletzing, C.; De Pascuale, S.; Kurth, W.; ik, O.;

YEAR: 2018     DOI: 10.1029/2018JA025658

Density; EMFISIS; plasmasphere; Plasmaspheric Hiss; Van Allen Probes

Magnetospheric source region of auroral finger-like structures observed by the RBSP-A satellite

Auroral finger-like structures appear equatorward of the auroral oval in the diffuse auroral region and contribute to the auroral fragmentation into patches. A previous report of the first conjugate observation of auroral finger-like structures using a THEMIS GBO camera and the THEMIS-E satellite at a radial distance of \~8 RE showed anti-phase oscillations of magnetic and plasma pressures in the dawnside plasma sheet. In the present study, we report another simultaneous observation of auroral finger-like structures at Gilla ...

Nishi, Katsuki; Shiokawa, Kazuo; Spence, Harlan;

YEAR: 2018     DOI: 10.1029/2018JA025480

Auroral finger-like structure; inner magnetosphere; pressure-driven instability; Van Allen Probes

Nonlinear drift resonance between charged particles and ultra-low frequency waves: Theory and Observations

In Earth\textquoterights inner magnetosphere, electromagnetic waves in the ultra-low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift-resonance theory, linearization is applied under the assumption of weak wave-particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, ...

Li, Li; Zhou, Xu-Zhi; Omura, Yoshiharu; Wang, Zi-Han; Zong, Qiu-Gang; Liu, Ying; Hao, Yi-Xin; Fu, Sui-Yan; Kivelson, Margaret; Rankin, Robert; Claudepierre, Seth; Wygant, John;

YEAR: 2018     DOI: 10.1029/2018GL079038

drift resonance; nonlinear process; Particle acceleration; Radiation belts; ULF waves; Van Allen Probes; wave-particle interactions

Solar Energetic Proton Access to the Magnetosphere During the 10\textendash14 September 2017 Particle Event

We explore the penetration of >60 MeV protons into the magnetosphere during the 10\textendash14 September 2017 solar energetic particle event. Solar energetic particles can cause single event effects and total dose degradation in spacecraft electronics. Therefore, it is important for satellite anomaly analysis to understand how deep into the magnetosphere these particles penetrate. Whereas most studies of geomagnetic cutoffs use low-altitude data, we use data from the Relativistic Proton Spectrometer on National Aeronautics ...

O\textquoterightBrien, T.; Mazur, J.; Looper, M.;

YEAR: 2018     DOI: 10.1029/2018SW001960

east-west effect; geomagnetic cutoffs; solar particle event; Van Allen Probes

A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes

A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind ...

Xiang, Zheng; Tu, Weichao; Ni, Binbin; Henderson, M.; Cao, Xing;

YEAR: 2018     DOI: 10.1029/2018GL078907

EMIC wave; magnetopause shadowing; Phase space density; radial diffusion; radiation belt dropout; Van Allen Probes; wave particle interaction

Test of Ion Cyclotron Resonance Instability Using Proton Distributions Obtained From Van Allen Probe-A Observations

Anisotropic velocity distributions of protons have long been considered as free energy sources for exciting electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights magnetosphere. Here we rigorously calculated the proton anisotropy parameter using proton data obtained from Van Allen Probe-A observations. The calculations are performed for times during EMIC wave events (distinguishing the times immediately after and before EMIC wave onsets) and for times exhibiting no EMIC waves. We find that the anisotropy val ...

Noh, Sung-Jun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Hyomin; Skoug, Ruth;

YEAR: 2018     DOI: 10.1029/2018JA025385

EMIC waves; Ion cyclotron instability; RBSP; temperature anisotropy; Van Allen Probes

The composition of plasma inside geostationary orbit based on Van Allen Probes observations

The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and ...

Yue, Chao; Bortnik, Jacob; Li, Wen; Ma, Qianli; Gkioulidou, Matina; Reeves, Geoffrey; Wang, Chih-Ping; Thorne, Richard; T. Y. Lui, Anthony; Gerrard, Andrew; Spence, Harlan; Mitchell, Donald;

YEAR: 2018     DOI: 10.1029/2018JA025344

ion composition; plasma pressure; Plasmapause; Van Allen Probes

Determining the wave vector direction of equatorial fast magnetosonic waves

We perform polarization analysis of the equatorial fast magnetosonic waves electric field over a 20 minute interval of Van Allen Probes A Waveform Receiver burst mode data. The wave power peaks at harmonics of the proton cyclotron frequency indicating the spacecraft is near or in the source region. The wave vector is inferred from the direction of the major axis of the electric field polarization ellipsoid and the sign of the phase between the longitudinal electric and compressional magnetic field components. We show that wa ...

Boardsen, Scott; Hospodarsky, George; Min, Kyungguk; Averkamp, Terrance; Bounds, Scott; Kletzing, Craig; Pfaff, Robert;

YEAR: 2018     DOI: 10.1029/2018GL078695

equatorial fast magnetosonic; E-field polarization analysis; Poynting Flux analysis; Van Allen Probes; wave vector analysis

EMIC wave events during the four GEM QARBM challenge intervals

This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM \textquotedblleftQuantitative Assessment of Radiation Belt Modeling\textquotedblright focus group: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near-equatorial magnetosphere and from s ...

Engebretson, M.; Posch, J.; Braun, D.; Li, W.; Ma, Q.; Kellerman, A.; Huang, C.-L.; Kanekal, S.; Kletzing, C.; Wygant, J.; Spence, H.; Baker, D.; Fennell, J.; Angelopoulos, V.; Singer, H.; Lessard, M.; Horne, R.; Raita, T.; Shiokawa, K.; Rakhmatulin, R.; Dmitriev, E.; Ermakova, E.;

YEAR: 2018     DOI: 10.1029/2018JA025505

Van Allen Probes

Evidence of Microbursts Observed Near the Equatorial Plane in the Outer Van Allen Radiation Belt

We present the first evidence of electron microbursts observed near the equatorial plane in Earth\textquoterights outer radiation belt. We observed the microbursts on March 31st, 2017 with the Magnetic Electron Ion Spectrometer and RBSP Ion Composition Experiment on the Van Allen Probes. Microburst electrons with kinetic energies of 29-92 keV were scattered over a substantial range of pitch angles, and over time intervals of 150-500 ms. Furthermore, the microbursts arrived without dispersion in energy, indicating that they w ...

Shumko, Mykhaylo; Turner, Drew; O\textquoterightBrien, T.; Claudepierre, Seth; Sample, John; Hartley, D.; Fennell, Joseph; Blake, Bernard; Gkioulidou, Matina; Mitchell, Donald;

YEAR: 2018     DOI: 10.1029/2018GL078451

Van Allen Probes

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the dusks ...

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Longitudinal dependence of whistler mode electromagnetic waves in the Earth\textquoterights inner magnetosphere

We use the measurements performed by the DEMETER (2004-2010) and the Van Allen Probes (2012-2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth\textquoterights inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz\textendash2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are com ...

ahlava, J.; emec, F.; ik, O.; a, I.; Hospodarskyy, G.; Parrot, M.; Kurth, W.; Bortnik, J.; Kletzing, C.;

YEAR: 2018     DOI: 10.1029/2018JA025284

DEMETER; Van Allen Probes; Whistler waves

  3      4      5      6      7      8