Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 1225 entries in the Bibliography.
Showing entries from 251 through 300
2019 |
We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ... Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.; Published by: Geophysical Research Letters Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019GL084379 |
We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ... Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.; Published by: Geophysical Research Letters Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019GL084379 |
Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8\textendash7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy-d ... Zhao, H.; Baker, D.N.; Li, X.; Malaspina, D.M.; Jaynes, A.N.; Kanekal, S.G.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2019JA027111 Acceleration mechanism; Inward radial diffusion; Local Acceleration; Phase space density; Radiation belts; ultrarelativistic electrons; Van Allen Probes |
Characteristics and Generation of Low-Frequency Magnetosonic Waves Below the Proton Gyrofrequency We report a Van Allen Probes observation of large-amplitude magnetosonic waves with the peak intensity below the proton gyrofrequency (fcp), which may potentially be misinterpreted as electromagnetic ion cyclotron waves. The frequency spacing of the wave harmonic structure suggests that these magnetosonic waves are excited at a distant source region and propagate radially inward. We also conduct a statistical analysis of low-frequency magnetosonic waves below fcp based on the Van Allen Probes data from October 2012 to Decemb ... Teng, Shangchun; Li, Wen; Tao, Xin; Ma, Qianli; Shen, Xiaochen; Published by: Geophysical Research Letters Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2019GL085372 Below the proton gyrofrequency; Low frequency magnetosonic wave; Van Allen Probes; wave generation; Wave propagation characteristics |
Propagation of EMIC Waves Inside the Plasmasphere: A Two-Event Study Electromagnetic ion cyclotron (EMIC) waves are important for the loss of high-energy electrons in the radiation belt. Based on the measurements of Van Allen Probes, two events during the same storm period are presented to study the propagation of EMIC waves. In the first event, left-handed polarized EMIC waves were observed near the plasmapause, while right-handed waves were observed in the inner plasmasphere. The Poynting flux of the right-hand waves was mainly directed inward and equatorward, and no positive growth rates w ... Wang, G.; Zhang, T.; Gao, Z.; Wu, M; Wang, G.; Schmid, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2019JA027055 density gradient; EMIC wave; inward propagation; refraction; right hand polarization; Snell\textquoterights law; Van Allen Probes |
Storm-time convection dynamics viewed from optical auroras A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field an ... Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1016/j.jastp.2019.105088 Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes |
Storm-time convection dynamics viewed from optical auroras A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field an ... Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1016/j.jastp.2019.105088 Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes |
The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) ov ... Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2019JA026695 ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes |
The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) ov ... Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2019JA026695 ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes |
Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and co ... Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2018JA026401 empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions |
Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and co ... Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2019 YEAR: 2019   DOI: 10.1029/2018JA026401 empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions |
We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these ... Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019JA026683 |
We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these ... Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019JA026683 |
We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these ... Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019JA026683 |
Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5 We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering ... Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng; Published by: Geophysical Research Letters Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019GL084822 3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes |
Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5 We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering ... Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng; Published by: Geophysical Research Letters Published on: 09/2019 YEAR: 2019   DOI: 10.1029/2019GL084822 3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes |
Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space ... Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2019 YEAR: 2019   DOI: 10.1029/2019JA026766 inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes |
Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space ... Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2019 YEAR: 2019   DOI: 10.1029/2019JA026766 inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes |
Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere Electromagnetic waves generated by lightning propagate into the plasmasphere as dispersed whistlers. They can therefore influence the overall wave intensity in space, which, in turn, is important for dynamics of the Van Allen radiation belts. We analyze spacecraft measurements in low-Earth orbit as well as in high-altitude equatorial region, together with a ground-based estimate of lightning activity. We accumulate wave intensities when the spacecraft are magnetically connected to thunderstorms and compare them with measurem ... ahlava, J.; emec, F.; Santolik, O.; a, Kolma\v; Hospodarsky, G.; Parrot, M.; Kurth, W.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 07/2019 YEAR: 2019   DOI: 10.1029/2019GL083918 |
We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25 ... Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2019 YEAR: 2019   DOI: 10.1029/2019JA026913 Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave |
We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25 ... Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2019 YEAR: 2019   DOI: 10.1029/2019JA026913 Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave |
Temperature Dependence of Plasmaspheric Ion Composition We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an examp ... Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2019 YEAR: 2019   DOI: 10.1029/2019JA026822 composition; plasmasphere: ion; temperature; Van Allen Probes |
Temperature Dependence of Plasmaspheric Ion Composition We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an examp ... Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2019 YEAR: 2019   DOI: 10.1029/2019JA026822 composition; plasmasphere: ion; temperature; Van Allen Probes |
Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth\textquoterights magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen- and helium-band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi-linear theory to understand the effects of resonant scatter ... Ma, Q.; Li, W.; Yue, C.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.; Published by: Geophysical Research Letters Published on: 06/2019 YEAR: 2019   DOI: 10.1029/2019GL083513 electromagnetic ion cyclotron waves; Ion heating; Quasilinear modeling; Resonant interaction in plasmasphere; ring current; Van Allen Probes; Van Allen Probes observation |
Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates A comprehensive statistical analysis on 8 years of lower-band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave-particle interaction. We find that \~5\textendash30\% of all chorus waves interact nonlinearly with \~30- to 300-keV electrons possessing equatorial pitch angles of >40\textdegree in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energe ... Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Bortnik, J.; Thorne, R.; Kurth, W.; Kletzing, C.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 06/2019 YEAR: 2019   DOI: 10.1029/2019GL083833 chorus waves; Electron acceleration; nonlinear wave particle interaction; THEMIS; Van Allen Probes; wave packet size |
Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates A comprehensive statistical analysis on 8 years of lower-band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave-particle interaction. We find that \~5\textendash30\% of all chorus waves interact nonlinearly with \~30- to 300-keV electrons possessing equatorial pitch angles of >40\textdegree in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energe ... Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Bortnik, J.; Thorne, R.; Kurth, W.; Kletzing, C.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 06/2019 YEAR: 2019   DOI: 10.1029/2019GL083833 chorus waves; Electron acceleration; nonlinear wave particle interaction; THEMIS; Van Allen Probes; wave packet size |
A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5- to 3-hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6\textendash7.8 Earth\textquoterights radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈-10; that is, the wave was westward ... Mager, Olga; Chelpanov, Maksim; Mager, Pavel; Klimushkin, Dmitri; Berngardt, Oleg; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019JA026541 compressional waves; Pc5; poloidal waves; SUPERDARN; ULF waves; Van Allen Probes |
A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5- to 3-hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6\textendash7.8 Earth\textquoterights radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈-10; that is, the wave was westward ... Mager, Olga; Chelpanov, Maksim; Mager, Pavel; Klimushkin, Dmitri; Berngardt, Oleg; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019JA026541 compressional waves; Pc5; poloidal waves; SUPERDARN; ULF waves; Van Allen Probes |
A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5- to 3-hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6\textendash7.8 Earth\textquoterights radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈-10; that is, the wave was westward ... Mager, Olga; Chelpanov, Maksim; Mager, Pavel; Klimushkin, Dmitri; Berngardt, Oleg; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019JA026541 compressional waves; Pc5; poloidal waves; SUPERDARN; ULF waves; Van Allen Probes |
Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self-consistent Rice Convection Model Equilibrium (RCM-E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion pre ... Chen, Margaret; Lemon, Colby; Hecht, James; Sazykin, Stanislav; Wolf, Richard; Boyd, Alexander; Valek, Philip; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019JA026545 diffuse aurora; electron and ion precipitation; field-line curvature scattering; inner magnetospheric electric field; ionospheric conductance; simulations and data comparisons; Van Allen Probes |
Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground-based data in order to derive the lower-energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequen ... asz, Lilla; Omura, Yoshiharu; Lichtenberger, J\; Friedel, Reinhard; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2018JA026337 chorus inversion; Van Allen Probes; Wave-particle interaction |
During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condit ... Lessard, Marc; Paulson, Kristoff; Spence, Harlan; Weaver, Carol; Engebretson, Mark; Millan, Robyn; Woodger, Leslie; Halford, Alexa; Horne, Richard; Rodger, Craig; Hendry, Aaron; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019JA026477 |
In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4\textendash3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ compositio ... Qin, Murong; Hudson, Mary; Li, Zhao; Millan, Robyn; Shen, Xiaochen; Shprits, Yuri; Woodger, Leslie; Jaynes, Allison; Kletzing, Craig; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2018JA025726 cold ion composition; EMIC wave; minimum resonant energy; pitch angle diffusion; quasi-linear theory; relativistic electron loss; Van Allen Probes |
Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave el ... Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL083118 |
Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave el ... Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL083118 |
Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently sca ... Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2018GL081863 Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes |
Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demon ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL083446 magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions |
Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demon ... Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.; Published by: Geophysical Research Letters Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2019GL083446 magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions |
Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of ene ... Omura, Yoshiharu; Hsieh, Yi-Kai; Foster, John; Erickson, Philip; Kletzing, Craig; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2018JA026374 inner magnetosphere; nonlinear process; Radiation belts; relativistic electrons; Van Allen Probes; wave particle interaction; whistler-mode chorus |
Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ... Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL083024 Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes |
Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ... Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL083024 Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes |
Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ... Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL083024 Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes |
Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ... Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL083024 Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes |
Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ... Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL083024 Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes |
Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles ... Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL083024 Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes |
We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth\textquoterights inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA\textquoterights Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode pla ... Soto-Chavez, A.; Lanzerotti, L.; Manweiler, J.; Gerrard, A.; Cohen, R.; Xia, Z.; Chen, L.; Kim, H.; Published by: Physics of Plasmas Published on: 04/2019 YEAR: 2019   DOI: 10.1063/1.5083629 |
Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probab ... Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL082633 EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes |
Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probab ... Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL082633 EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes |
Satellite-based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In-flight calibration of double-probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a paramet ... Published by: Earth and Space Science Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2018EA000550 DC electric field; double probe instrument; electric drift; plasmasphere; shorting factor; Van Allen Probes |
Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence condit ... Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2018JA026168 Magnetic Storms; Oxygen ions; ring current; Van Allen Probes |