Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 1116 entries in the Bibliography.
Showing entries from 251 through 300
2019 |
Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probab ... Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig; Published by: Geophysical Research Letters Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2019GL082633 EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes |
Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence condit ... Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2018JA026168 Magnetic Storms; Oxygen ions; ring current; Van Allen Probes |
EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterig ... Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026427 bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes |
Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred ... Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026291 EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes |
Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred ... Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026291 EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes |
We propose a new method that uses the World-Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 \texttimes 108 strokes.). The ratio of the drift power density to the local power density defines a time-resolved WWLLN-based model of lightning-generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time-resolved LGW intensity measured by the Probes allows direct compu ... Ripoll, J.-F.; Farges, T.; Lay, E.; Cunningham, G.; Published by: Geophysical Research Letters Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018GL081146 drift wave power density; lightning power density; lightning-generated waves; occurrence rate; Radiation belts; Van Allen Probes; WWLLN database |
Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15\textendash22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and ... Kilpua, E.; Turner, D.; Jaynes, A.; Hietala, H.; Koskinen, H.; Osmane, A.; Palmroth, M.; Pulkkinen, T.; Vainio, R.; Baker, D.; Claudepierre, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026238 interplanetary coronal mass ejections; magnetospheric storm; magnetospheric waves; Outer Belt; Radiation belts; Solar wind; Van Allen Probes |
Whistler mode waves are important for precipitating energetic electrons into Earth\textquoterights upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satel ... Li, W.; Shen, X.-C.; Ma, Q.; Capannolo, L.; Shi, R.; Redmon, R.; Rodriguez, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Published by: Geophysical Research Letters Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2019GL082095 electron precipitation; hiss; plasmaspheric plume; Plume wave; Van Allen Probes; whistler mode wave |
Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To in ... Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA026184 alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes |
Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To in ... Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA026184 alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes |
Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To in ... Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA026184 alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes |
Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To in ... Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA026184 alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes |
This work designs a new model called PreMevE to predict storm-time distributions of relativistic electrons within Earth\textquoterights outer radiation belt. This model takes advantage of the cross-energy, -L-shell, and \textendashpitch-angle coherence associated with wave-electron resonant interactions, ingests observations from belt boundaries\textemdashmainly by NOAA POES in low-Earth-orbits (LEOs), and provides high-fidelity nowcast (multiple-hour prediction) and forecast (> ~1 day) of MeV electron fluxes over L-shells b ... Chen, Yue; Reeves, Geoffrey; Fu, Xiangrong; Henderson, Michael; Published by: Space Weather Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018SW002095 event-specific predictions; LANL GEO observations; linear predictive filters; MeV electron events; outer radiation belt; precipitation at low-earth-orbits (LEO); Van Allen Probes |
Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.; Published by: Nature Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1038/nphys4351 |
Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.; Published by: Nature Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1038/nphys4351 |
This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak-to-peak), in the large-scale electric field (~0.24 mV/m peak-to-peak), and in the cold plasma density (~250 cm-3 \textendash ~70 cm-3 peak-to-peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declini ... Thaller, S.; Wygant, J.; Cattell, C.; Breneman, A.; Tyler, E.; Tian, S.; Engel, A.; De Pascuale, S.; Kurth, W.; Kletzing, C.; Tears, J.; Malaspina, David; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA026365 convection electric field; inner magnetosphere; Plasmapause; plasmasphere; solar rotation; Van Allen Probes |
This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak-to-peak), in the large-scale electric field (~0.24 mV/m peak-to-peak), and in the cold plasma density (~250 cm-3 \textendash ~70 cm-3 peak-to-peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declini ... Thaller, S.; Wygant, J.; Cattell, C.; Breneman, A.; Tyler, E.; Tian, S.; Engel, A.; De Pascuale, S.; Kurth, W.; Kletzing, C.; Tears, J.; Malaspina, David; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA026365 convection electric field; inner magnetosphere; Plasmapause; plasmasphere; solar rotation; Van Allen Probes |
We present the first statistical analysis with continuous data coverage and non-averaged amplitudes of the prevalence and distribution of high-amplitude (> 5 mV/m) whistler-mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0-7 where they are present 1-4\% of the time. During high geomagnetic activity, high-amplitude whistler-mode wave occurrence rises above 30\% in some regions. During these active times the plasmasphere erodes to lower ... Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.; Published by: Geophysical Research Letters Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2019GL082292 Chorus; Radiation belt; Van Allen belt; Van Allen Probes; Whistler waves |
Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In thes ... Hartley, D.; Kletzing, C.; Chen, L.; Horne, R.; ik, O.; Published by: Geophysical Research Letters Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2019GL082111 chorus waves; EMFISIS; Plasmaspheric Hiss; plasmaspheric plumes; Van Allen Probes; wave normal angle |
Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes The generation of a high-frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (\~10-6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electr ... He, Zhaoguo; Chen, Lunjin; Liu, Xu; Zhu, Hui; Liu, Si; Gao, Zhonglei; Cao, Yong; Published by: Geophysical Research Letters Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018GL081578 electron; high frequency; local generation; Plasmaspheric Hiss; substorm injection; Van Allen Probes |
Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes The generation of a high-frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (\~10-6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electr ... He, Zhaoguo; Chen, Lunjin; Liu, Xu; Zhu, Hui; Liu, Si; Gao, Zhonglei; Cao, Yong; Published by: Geophysical Research Letters Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018GL081578 electron; high frequency; local generation; Plasmaspheric Hiss; substorm injection; Van Allen Probes |
Low-Energy ( The heavy ion component of the low-energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low-energy ( Gkioulidou, Matina; Ohtani, S.; Ukhorskiy, A; Mitchell, D.; Takahashi, K.; Spence, H.; Wygant, J.; Kletzing, C.; Barnes, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA025862 |
Low-Energy ( The heavy ion component of the low-energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low-energy ( Gkioulidou, Matina; Ohtani, S.; Ukhorskiy, A; Mitchell, D.; Takahashi, K.; Spence, H.; Wygant, J.; Kletzing, C.; Barnes, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA025862 |
We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. Fo ... Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026326 Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes |
We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. Fo ... Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026326 Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes |
Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal an ... Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026041 Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves |
Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal an ... Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026041 Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves |
A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 ... Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026066 energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions |
A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 ... Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026066 energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions |
We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we ... Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026349 Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes |
We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we ... Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026349 Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes |
We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we ... Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026349 Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes |
Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. F ... Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan; Published by: Geophysical Research Letters Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018GL081550 EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions |
To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen ... Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA025886 EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes |
2018 |
The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle ... Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2018 YEAR: 2018   DOI: 10.1029/2018JA026111 electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions |
Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations ... Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2018 YEAR: 2018   DOI: 10.1029/2018JA025963 CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves |
Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations ... Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2018 YEAR: 2018   DOI: 10.1029/2018JA025963 CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves |
There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ... Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.; Published by: Geophysical Research Letters Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018GL080262 EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes |
There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ... Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.; Published by: Geophysical Research Letters Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018GL080262 EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes |
There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ... Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.; Published by: Geophysical Research Letters Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018GL080262 EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes |
Simulations of Van Allen Probes Plasmaspheric Electron Density Observations We simulate equatorial plasmaspheric electron densities using a physics-based model (Cold PLasma, CPL; used in the ring current-atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, resp ... De Pascuale, S.; Jordanova, V.; Goldstein, J.; Kletzing, C.; Kurth, W.; Thaller, S.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2018 YEAR: 2018   DOI: 10.1029/2018JA025776 convection; observations; plasmasphere; RBSP; simulation; Van Allen Probes |
Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location ... Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080274 Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes |
Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location ... Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080274 Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes |
Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolut ... Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080291 drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction |
Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolut ... Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080291 drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction |
Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch-angle anisotropies. The ratio of the number o ... Zhu, Hui; Shprits, Yuri; Chen, Lunjin; Liu, Xu; Kellerman, Adam; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2017JA025023 electromagnetic waves; Exohiss; linear theory; Radiation belts; Van Allen Probes |
Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ... e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080122 Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite |
Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ... e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.; Published by: Geophysical Research Letters Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018GL080122 Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite |
Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed near ... emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA026058 |
We report a typical event that fast magnetosonic (MS) waves, exohiss, and two-band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2-D Fokker-Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS w ... Hua, Man; Ni, Binbin; Fu, Song; Gu, Xudong; Xiang, Zheng; Cao, Xing; Zhang, Wenxun; He, Ying; Huang, He; Lou, Yuequn; Zhang, Yang; Published by: Geophysical Research Letters Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018GL079533 Combined scattering effect; diffusion simulations; Exohiss; magnetosonic waves; resonant wave-particle interactions; two-band chorus waves; Van Allen Probes |