Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 400 entries in the Bibliography.


Showing entries from 351 through 400


2014

Signature modeling for LWIR spectrometer

Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantl ...

Firpi, Alexer; Oxenrider, Jason; Ramachandran, Vignesh; Mitchell, Herbert; Tzeng, Nigel; Rodriguez, Benjamin;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836439

hyperspectral imaging; infrared imaging; infrared spectrometers; radiance data conversion

Spin stabilization design and testing of the Van Allen Probes

This paper describes the design decisions taken and the mass properties tracking and testing flow chosen for the Van Allen Probes spacecraft and their deployable systems to achieve the coning angle requirements. Topics include a list of major requirements, a brief description of the error budget, a description of the tracking process of the spacecraft mass properties prior to test, a description of the spin balance and mass properties testing of the spacecraft core and deployable systems, and a presentation of the final mass ...

Berman, Simmie; Cheng, Weilun; Borowski, Heather; Persons, David;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836234

Van Allen Probes

Global time-dependent chorus maps from low-Earth-orbit electron precipitation and Van Allen Probes data

Substorm injected electrons (several\textendash100 s keV) produce whistler-mode chorus waves that are thought to have a major impact on the radiation belts by causing both energization and loss of relativistic electrons in the outer belt. High-altitude measurements, such as those from the Van Allen Probes, provide detailed wave measurements at a few points in the magnetosphere. But physics-based models of radiation-belt dynamics require knowledge of the global distribution of chorus waves. We demonstrate that time-dependent, ...

Chen, Yue; Reeves, Geoffrey; Friedel, Reiner; Cunningham, Gregory;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059181

Van Allen Probes

Magnetosonic wave excitation by ion ring distributions in the Earth\textquoterights inner magnetosphere

Combining Time History of Events and Macroscale Interaction during Substorms (THEMIS) wave and particle observations and a quantitative calculation of linear wave growth rate, we demonstrate that magnetosonic (MS) waves can be locally excited by ion ring distributions in the Earth\textquoterights magnetosphere when the ion ring energy is comparable to the local Alfven energy. MS waves in association with ion ring distributions were observed by THEMIS A on 24 November 2010 in the afternoon sector, both outside the plasmapause ...

Ma, Qianli; Li, Wen; Chen, Lunjin; Thorne, Richard; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013JA019591

magnetosonic waves; ring current; THEMIS observation; wave excitation

Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission

He ions contribute to Earth\textquoterights ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring curr ...

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059175

Van Allen Probes

Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21\textendash24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L>5 ...

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; He, Zhaoguo; Zhu, Hui; Zhang, Min; Shen, Chao; Wang, Yuming; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058912

Van Allen Probes

Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21\textendash24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L>5 ...

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; He, Zhaoguo; Zhu, Hui; Zhang, Min; Shen, Chao; Wang, Yuming; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058912

Van Allen Probes

Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21\textendash24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L>5 ...

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; He, Zhaoguo; Zhu, Hui; Zhang, Min; Shen, Chao; Wang, Yuming; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058912

Van Allen Probes

Rotationally driven zebra stripes in Earth s inner radiation belt

Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth\textquoterights rotation can change the velocity of trapped particles by only about 1\textendash2 kil ...

Ukhorskiy, A; Sitnov, M.; Mitchell, D.; Takahashi, K; Lanzerotti, L.; Mauk, B.;

Published by: Nature      Published on: 01/2014

YEAR: 2014     DOI: 10.1038/nature13046

Magnetospheric physics; Van Allen Probes

2013

Early Results From the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission

The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth\textquoterights Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array outp ...

Maurer, Richard; Goldsten, John; Peplowski, Patrick; Holmes-Siedle, Andrew; Butler, Michael; Herrmann, Carl; Mauk, Barry;

Published by: IEEE Transactions on Nuclear Science      Published on: Jan-12-2013

YEAR: 2013     DOI: 10.1109/TNS.2013.2281937

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emissio ...

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

Published by: Nature      Published on: 12/2013

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emissio ...

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

Published by: Nature      Published on: 12/2013

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes

Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss

We perform a comprehensive analysis to evaluate hiss-induced scattering effect on the pitch angle evolution and associated decay processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique hiss component is negligible. Quasi-parallel approximation is good for evaluation of hiss-driven electron scattering rates <= 2 MeV. However, realistic wave propagation angles as a function of latitude must be considered to accurately quantify hiss scattering rates above 2 MeV, and ambient plasma ...

Ni, Binbin; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; Chen, Lunjin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA019260

Van Allen Probes

AE9, AP9 and SPM: New Models for Specifying the Trapped Energetic Particle and Space Plasma Environment

The radiation belts and plasma in the Earth\textquoterights magnetosphere pose hazards to satellite systems which restrict design and orbit options with a resultant impact on mission performance and cost. For decades the standard space environment specification used for spacecraft design has been provided by the NASA AE8 and AP8 trapped radiation belt models. There are well-known limitations on their performance, however, and the need for a new trapped radiation and plasma model has been recognized by the engineering communi ...

Ginet, G.; textquoterightBrien, T.; Huston, S.; Johnston, W.; Guild, T.; Friedel, R.; Lindstrom, C.; Roth, C.; Whelan, P.; Quinn, R.; Madden, D.; Morley, S.; Su, Yi-Jiun;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9964-y

RBSP; Van Allen Probes

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively ...

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively ...

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes

Early Results from the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission

The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth\textquoterights Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array outp ...

Maurer, Richard; Goldsten, J.; Peplowski, P.; Holmes-Siedle, A.; Butler, Michael; Herrmann, C.; Mauk, B.;

Published by:       Published on: 11/2013

YEAR: 2013     DOI: 10.1109/TNS.2013.2281937

RBSP; Van Allen Probes

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including ke ...

Kletzing, C.; Kurth, W.; Acuna, M.; MacDowall, R.; Torbert, R.; Averkamp, T.; Bodet, D.; Bounds, S.; Chutter, M.; Connerney, J.; Crawford, D.; Dolan, J.; Dvorsky, R.; Hospodarsky, G.; Howard, J.; Jordanova, V.; Johnson, R.; Kirchner, D.; Mokrzycki, B.; Needell, G.; Odom, J.; Mark, D.; Pfaff, R.; Phillips, J.; Piker, C.; Remington, S.; Rowland, D.; Santolik, O.; Schnurr, R.; Sheppard, D.; Smith, C.; Thorne, R.; Tyler, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9993-6

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in t ...

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in t ...

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission

The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in t ...

Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-0013-7

RBSP; Van Allen Probes

The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA\textquoterights Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electr ...

Goldsten, J.; Maurer, R.; Peplowski, P.; Holmes-Siedle, A.; Herrmann, C.; Mauk, B.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9917-x

RBSP; Van Allen Probes

The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20\textendash240 keV), two medium-energy units (80\textendash1200 keV), and a high-energy unit (800\textendash4800 keV). The high unit also contains a proton telescope (55 keV\textendash20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band ...

Blake, J.; Carranza, P.; Claudepierre, S.; Clemmons, J.; Crain, W.; Dotan, Y.; Fennell, J.; Fuentes, F.; Galvan, R.; George, J.; Henderson, M.; Lalic, M.; Lin, A; Looper, M.; Mabry, D.; Mazur, J.; McCarthy, B.; Nguyen, C.; textquoterightBrien, T.; Perez, M.; Redding, M.; Roeder, J.; Salvaggio, D.; Sorensen, G.; Spence, H.; Yi, S.; Zakrzewski, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9991-8

RBSP; Van Allen Probes

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine \textquotedbllefthow space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,\textquotedblright and how the ring current is involved in radiation belt ...

Mitchell, D.; Lanzerotti, L.; Kim, C.; Stokes, M.; Ho, G.; Cooper, S.; UKHORSKIY, A; Manweiler, J.; Jaskulek, S.; Haggerty, D.; Brandt, P.; SITNOV, M; Keika, K.; Hayes, J.; Brown, L.; Gurnee, R.; Hutcheson, J.; Nelson, K.; Paschalidis, N.; Rossano, E.; Kerem, S.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9965-x

RBSP; Van Allen Probes

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine \textquotedbllefthow space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,\textquotedblright and how the ring current is involved in radiation belt ...

Mitchell, D.; Lanzerotti, L.; Kim, C.; Stokes, M.; Ho, G.; Cooper, S.; UKHORSKIY, A; Manweiler, J.; Jaskulek, S.; Haggerty, D.; Brandt, P.; SITNOV, M; Keika, K.; Hayes, J.; Brown, L.; Gurnee, R.; Hutcheson, J.; Nelson, K.; Paschalidis, N.; Rossano, E.; Kerem, S.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9965-x

RBSP; Van Allen Probes

Radiation Belt Storm Probes\textemdashObservatory and Environments

The National Aeronautics and Space Administration\textquoterights (NASA\textquoterights) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that compri ...

Kirby, Karen; Artis, David; Bushman, Stewart; Butler, Michael; Conde, Rich; Cooper, Stan; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Kelley, Jeff; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9949-2

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ...

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ...

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

Lithium Ion Battery Fault Management on the Van Allen Probes

The Van Allen Probes (formerly known as the Radiation Belt Storm Probes or RBSP) mission launched on 30 August 2012 as part of NASA\textquoterights Living With a Star (LWS) Program. The ultimate goal of the mission is to understand how populations of relativistic electrons and penetrating ions in the Earth\textquoterights Van Allen Radiation Belts are affected by the Sun. The mission consists of two nearly identical observatories orbiting in highly-elliptical Earth orbits. The two satellite system allows for the study of the ...

Smith, Evan; Butler, Michael; Fretz, Kristin; Wilhelm, Benjamin;

Published by:       Published on: 09/2013

YEAR: 2013     DOI: 10.2514/6.2013-5526

Van Allen Probes

Phase Space Density matching of relativistic electrons using the Van Allen Probes: REPT results

1] Phase Space Density (PSD) matching can be used to identify the presence of nonadiabatic processes, evaluate accuracy of magnetic field models, or to cross-calibrate instruments. Calculating PSD in adiabatic invariant coordinates requires a global specification of the magnetic field. For a well specified global magnetic field, nonadiabatic processes or inadequate cross calibration will give a poor PSD match. We have calculated PSD(μ, K) for both Van Allen Probes using a range of models and compare these PSDs at conjunctio ...

Morley, S.; Henderson, M.; Reeves, G.; Friedel, R.; Baker, D.;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50909

RBSP; Van Allen Probes

Scattering rates of inner belt protons by EMIC waves: A comparison between test particle and diffusion simulations

Inner belt energetic protons are a hindrance to development of space technologies. The emission of electromagnetic ion cyclotron (EMIC) waves from spaceborne transmitters has been proposed as a way to solve this problem. The interaction between particles and narrowband emissions has been typically studied using nonlinear test particle simulations. We show that this formulation results in a random walk of the inner belt protons in velocity space. In this paper we compute bounce-averaged pitch angle diffusion rates from test p ...

de Soria-Santacruz, M.; Orlova, K.; Martinez-Sanchez, M.; Shprits, Y;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50925

EMIC; inner belt; wave-particle interactions

Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons

[1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20\textendash500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The a ...

Claudepierre, S.; Mann, I.R.; Takahashi, K; Fennell, J.; Hudson, M.; Blake, J.; Roeder, J.; Clemmons, J.; Spence, H.; Reeves, G.; Baker, D.; Funsten, H.; Friedel, R.; Henderson, M.; Kletzing, C.; Kurth, W.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.50901

RBSP; Van Allen Probes

Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction

Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated w ...

Dai, L.; Takahashi, K; Wygant, J.; Chen, L.; Bonnell, J; Cattell, C.; Thaller, S.; Kletzing, C.; Smith, C.; MacDowall, R.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Funsten, H.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50800

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The ...

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The ...

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The ...

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The ...

Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.;

Published by: Space Science Reviews      Published on: 08/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9968-7

RBSP; Van Allen Probes

Electron Acceleration in the Heart of the Van Allen Radiation Belts

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local ...

Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.;

Published by: Science      Published on: 07/2013

YEAR: 2013     DOI: 10.1126/science.1237743

Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magneti ...

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 06/2013

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly ...

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

Published by: Science      Published on: 04/2013

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

Mission Overview for the Radiation Belt Storm Probes Mission

Provided here is an overview of Radiation Belt Storm Probes (RBSP) mission design. The driving mission and science requirements are presented, and the unique engineering challenges of operating in Earth\textquoterights radiation belts are discussed in detail. The implementation of both the space and ground segments are presented, including a discussion of the challenges inherent with operating multiple observatories concurrently and working with a distributed network of science operation centers. An overview of the launch ve ...

Stratton, J.; Harvey, R.; Heyler, G.;

Published by: Space Science Reviews      Published on: 01/2013

YEAR: 2013     DOI: 10.1007/s11214-012-9933-x

RBSP; Van Allen Probes

2012

Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm

1] The temporal and spatial development of the ring current is evaluated during the 23\textendash26 October 2002 high-speed stream (HSS) storm, using a kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). The effects of nondipolar magnetic field configuration are investigated on both ring current ion and electron dynamics. As the self-consistent magnetic field is depressed at large (>4RE) radial distances on the nightside during the storm main phase, the particles\textquoteright d ...

Jordanova, V.; Welling, D.; Zaharia, S.; Chen, L.; Thorne, R.;

Published by: Journal of Geophysical Research      Published on: 09/2012

YEAR: 2012     DOI: 10.1029/2011JA017433

The RBSP Spacecraft Power System Design and Development

The RBSP (Radiation Belt Storm Probes) twin spacecraft are set to launch in August 2012. The spacecraft will be inserted into the highly elliptical regions of high energy particles trapped by the magnetic field of the earth. These regions are often referred to as the Van Allen Belts. The twin spacecraft will operate entirely within the radiation belts throughout their mission. Because of the intense environment of operation and to reduce cost and risk, the approach taken in the power system electronics was to use quasi conve ...

Butler, Michael; Laughery, Sean;

Published by:       Published on: 08/2012

YEAR: 2012     DOI: 10.2514/MIECEC1210.2514/6.2012-4059

Van Allen Probes

Radiation Belt Storm Probe Spacecraft and Impact of Environment on Spacecraft Design

NASA\textquoterights Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission scheduled to launch in September 2012 and is the next science mission in NASA\textquoterights Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, and the influence of the sun on the earth\textquoterights environment, by measuring particles, electric and magnetic fields and waves that comprise the geospace. The mission is composed of two identically instrument ...

Kirby, Karen; Bushman, Stewart; Butler, Michael; Conde, Rich; Fretz, Kristen; Herrmann, Carl; Hill, Adrian; Maurer, Richard; Nichols, Richard; Ottman, Geffrey; Reid, Mark; Rogers, Gabe; Srinivasan, Dipak; Troll, John; Williams, Bruce;

Published by:       Published on: 03/2012

YEAR: 2012     DOI: 10.1109/AERO.2012.6187020

RBSP; Van Allen Probes

Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering

We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a ...

Crabtree, C.; Rudakov, L.; Ganguli, G.; Mithaiwala, M.; Galinsky, V.; Shevchenko, V.;

Published by: Physics of Plasmas      Published on: 01/2012

YEAR: 2012     DOI: 10.1063/1.3692092

Whistler waves; Magnetosphere

2007

The energization of relativistic electrons in the outer Van Allen radiation belt

The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth\textquoterights magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (Edouble greater than0.5 MeV) has been particularly difficult to definitively resolve. The traditional expl ...

Chen, Yue; Reeves, Geoffrey; Friedel, Reiner;

Published by: Nature Physics      Published on: 09/2007

YEAR: 2007     DOI: 10.1038/nphys655

Local Acceleration due to Wave-Particle Interaction

2000

Simulation of the outer radiation belt electron flux decrease during the March 26, 1995, magnetic storm

In this paper we study the variation of the relativistic electron fluxes in the Earth\textquoterights outer radiation belt during the March 26, 1995, magnetic storm. Using observations by the radiation environment monitor (REM) on board the space technology research vehicle (STRV-Ib), we discuss the flux decrease and possible loss of relativistic electrons during the storm main phase. In order to explain the observations we have performed fully adiabatic and guiding center simulations for relativistic equatorial electrons in ...

Desorgher, L.; ühler, P.; Zehnder, A.; ückiger, E.;

Published by: Journal of Geophysical Research      Published on: 09/2000

YEAR: 2000     DOI: 10.1029/2000JA900060

Magnetopause Losses

1998

Substorm electron injections: Geosynchronous observations and test particle simulations

We investigate electron acceleration and the flux increases associated with energetic electron injections on the basis of geosynchronous observations and test-electron orbits in the dynamic fields of a three-dimensional MHD simulation of neutral line formation and dipolarization in the magnetotail. This complements an earlier investigation of test protons [Birn et al., 1997b]. In the present paper we consider equatorial orbits only, using the gyrocenter drift approximation. It turns out that this approximation is valid for e ...

Birn, J.; Thomsen, M.; Borovsky, J.; Reeves, G.; McComas, D.; Belian, R.; Hesse, M.;

Published by: Journal of Geophysical Research      Published on: 05/1998

YEAR: 1998     DOI: 10.1029/97JA02635

Substorm Injections

1969

Particle fluxes in the outer geomagnetic field

The outer geomagnetic field comprises the outer radiation belt, consisting of electrons with energies of 104\textendash107 ev, and the unstable radiation zone. The outer radiation belt is bounded on its inner side by a gap, which is at various times located at a distance of 2.2\textendash3.5 RE and in which a considerable precipitation of electrons from radiation belts occurs, possibly owing to a high intensity of electromagnetic waves. The boundary separating the outer radiation belt from the unstable radiation zone is at ...

Vernov, S.; Gorchakov, E.; Kuznetsov, S.; Logachev, Yu.; Sosnovets, E.; Stolpovsky, V.;

Published by: Reviews of Geophysics      Published on: 02/1969

YEAR: 1969     DOI: 10.1029/RG007i001p00257

Radial Transport

1966

Limit on Stably Trapped Particle Fluxes

Whistler mode noise leads to electron pitch angle diffusion. Similarly, ion cyclotron noise couples to ions. This diffusion results in particle precipitation into the ionosphere and creates a pitch angle distributon of trapped particles that is unstable to further wave growth. Since excessive wave growth leads to rapid diffusion and particle loss, the requirement that the growth rate be limited to the rate at which wave energy is depleted by wave propagation permits an estimate of an upper limit to the trapped equatorial par ...

Kennel, C.; Petschek, H.;

Published by: Journal Geophysical Research      Published on: 01/1966

YEAR: 1966     DOI: 10.1029/JZ071i001p00001

Local Loss due to VLF/ELF/EMIC Waves



  3      4      5      6      7      8