Van Allen Probes Bibliography is from August 2012 through September 2021


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements

AuthorSkov, Tamitha; Fennell, Joseph; Roeder, James; Blake, Bernard; Claudepierre, Seth;
Keywordsartificial satellites; dielectric materials; electrons; Energy measurement; MAGEis; Magnetosphere; particle detectors; protons; Van Allen Probes
AbstractThe Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related to charging levels quite possibly encountered by shielded dielectrics with different resistivities. Using a simple model, we find temporal profiles for different materials showing the long-term charge deposition rate and estimated charge density levels reaching high levels. These levels are an indicator of internal charging rates that satellites might possibly experience in the inner magnetosphere. The results are compared with charge densities that can induce internal electrostatic discharge.
Year of Publication2015
JournalIEEE Transactions on Plasma Science
Number of Pages3070-3074
Date Published09/2015