Van Allen Probes Bibliography is from August 2012 through September 2021


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

AuthorArtemyev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.;
Keywordschorus waves; CLUSTER SPACECRAFT; equatorial noise; MAGNETIC-FIELD; PLASMA; Quasi-linear diffusion; radiation belt electrons; RESONANT SCATTERING; Van Allen Probes; WHISTLER-MODE WAVES
AbstractIn this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow h distribution (when delta theta >= 0.05 degrees), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth\textquoterights radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes > 300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth\textquoterights magnetotail. (C) 2015 AIP Publishing LLC.
Year of Publication2015
JournalPhysics of Plasmas
Number of Pages062901
Date Published06/2015