Van Allen Probes Bibliography is from August 2012 through September 2021


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Magnetopause structure favorable for radiation belt electron loss

AuthorKim, Kyung-Chan; Lee, Dae-Young;
Keywordsmagnetopause shadowing; relativistic electron loss; test particle orbit calculation
AbstractMagnetopause shadowing is regarded as one of the major reasons for the loss of relativistic radiation belt electrons, although this has not yet been fully validated by observations. Previous simulations on this process assumed that all of the electrons encountering the magnetopause are simply lost into the magnetosheath just as ring current ions can be and did not examine details of the particle dynamics across and inside the magnetopause which has a finite thickness. In this paper, we perform test particle orbit calculations based on a simplified one-dimensional magnetopause model to demonstrate specifically how relativistic electrons arriving at the prenoon side of the magnetopause can be lost. The calculation results indicate that the loss process is determined by two factors: (i) a gradient of the magnetic field magnitude, B, along the magnetopause and (ii) a component of the magnetic field normal to the magnetopause. First, without a normal component of the magnetic field as in a tangential discontinuity, electrons can cross the magnetopause by the magnetic gradient drift motion due to the existence of B-gradient along the magnetopause. The minimum kinetic energies for loss decrease with increasing B-gradient along the magnetopause induced by the enhanced solar wind dynamic pressure. However, this process is not too strong in the sense that electrons have to drift rather a long distance along the magnetopause before entering the magnetosheath unless the B-gradient along the magnetopause is unusually strong, or the particle energy is very high like above 3 MeV. In contrast, if a normal component of the magnetic field exists inside the magnetopause, as in a rotational discontinuity, electrons can cross the magnetopause far more easily along the guided field line inside the magnetopause. This is effective for even a very small magnitude of normal component field such as somewhat less than 1 nT regardless of its direction and for a rather low energy of particles such as 0.5 MeV. Also, the loss occurs over more than half of the pitch angle domain, i.e., in the range between ~80\textdegree and 180\textdegree or 0\textdegree and ~100\textdegree, depending on the direction of normal component. Therefore, we suggest that radiation belt electron loss by the magnetopause shadowing process can be substantial (or can be effective) when a substantial area of the magnetopause is given a finite normal magnetic field component as well as B-gradient along the magnetopause.
Year of Publication2014
JournalJournal of Geophysical Research: Space Physics
Number of Pages5495-5508
Date Published07/2014