Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction
Author | Dai, L.; Takahashi, K; Wygant, J.; Chen, L.; Bonnell, J; Cattell, C.; Thaller, S.; Kletzing, C.; Smith, C.; MacDowall, R.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Funsten, H.; Reeves, G.; Spence, H.; |
Keywords | RBSP; Van Allen Probes |
Abstract | Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L\~5. The observed wave period, Eφ/Br ratio and the 90\textdegree phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with \~90 keV ring current ions. The estimated earthward gradient of ion phase space density provides a free energy source for wave generation through the drift-resonance instability. A similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One specific example is the \textquotedblleftfishbone\textquotedblright instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations. |
Year of Publication | 2013 |
Journal | Geophysical Research Letters |
Volume | 40 |
Number of Pages | |
Section | 4127 |
Date Published | 08/2013 |
ISBN | |
URL | http://onlinelibrary.wiley.com/doi/10.1002/grl.50800/full |
DOI | 10.1002/grl.50800 |