Van Allen Probes Bibliography is from August 2012 through September 2021


  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

AuthorRipoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;
Keywordslightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes
AbstractAbstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mode waves (1 ± 1.6 pT and 19 ± 59 μV/m). Extreme events (1/5,000) can reach 100 pT and contributes strongly to the mean power below L = 2. We find excellent correlations between World Wide Lightning Location Network-based power and wave amplitudes in space at various longitudes. We reveal strong dayside ionospheric damping of the LGW electric field. LGW amplitudes drop for L < 2, contrary to the Earth s intense equatorial lightning activity. We conclude that it is difficult for equatorial LGW to propagate and remain at L < 2.
Year of Publication2020
JournalGeophysical Research Letters
Number of Pages
Date Published03/2020