MMS and Van Allen Probes conjunctions: Studying wave activity associated with energetic particle injections and substorms

Drew L. Turner
The Aerospace Corporation

Collaborators: Joe Fennell, Seth Claudepierre, Bern Blake, Wen Li, Jacob Bortnik, Craig Kletzing, David Hartley, Rick Wilder, Allison Jaynes, Dan Baker, Ian Cohen, Barry Mauk, and Geoff Reeves
NASA’s Magnetospheric Multiscale (MMS) Overview

- Launched March 2015
- 4 identical s/c in close formation (10s to 100s km separation)
- Currently in 24-hr elliptical orbits (apogee ~12 Re)
- Precession around the system in 1-year
- Full suite of plasma, particles, fields, and waves instrumentation

Fig. 4 MMS instrument deck layout

Table 1

Major instrument suite elements and responsible co-investigators

<table>
<thead>
<tr>
<th>Instrument Suite</th>
<th>Responsible Co-investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELDS</td>
<td>Roy Torbert—UNH</td>
</tr>
<tr>
<td>Fast Plasma</td>
<td>Craig Pollock—GSFC</td>
</tr>
<tr>
<td>Energetic Particles</td>
<td>Barry Mauk—APL</td>
</tr>
<tr>
<td>HPCA</td>
<td>Stephen Fuselier—SwRI</td>
</tr>
</tbody>
</table>

ADP - Axial Double Probe
AFG - Analog Flux Gate Magnetometer (mounted on boom)
ASPOC - Active Spacecraft Potential Control
CEB - Central Electronics Box (Fields)
CIDP - Central Instrument Data Processor
DES - Dual Electron Spectrometer
DFG - Digital Flux Gate Magnetometer (mounted on boom)
DIS - Dual Ion Spectrometer
EDI/GDU - Electron Drift Instrument/Gun Detector Unit
EIS - Energetic Ion Spectrometer
FEEPS - Fly’s Eye Energetic Particle Sensors
HPCA - Hot Plasma Composition Analyzer
IDPU - Instrument Data Processing Unit (FPI)
SCM - Search-Coil Magnetometer (mounted on boom)
SDP - Spin-Plane Double Probe
TP/HPDB – Test Panel Heater Power Distribution Box

Burch et al. [SSR 2015]
NASA’s Magnetospheric Multiscale (MMS)

MMS Instrument Details

FPI:
- Ions: eV to 30 keV, 150 ms all-sky dist. and moments
- Electrons: eV to 30 keV, 30 ms all-sky dist. and moments

HPCA:
- Ion composition (10 eV to 30 keV)
- H⁺, He⁺, He++ + O⁺
- Full distributions every spin

EPD:
- EIS
- FEEPS

FEEPS: Flys Eye Energetic Particles Sensor
- Electron spectra: Nine views/head
 25 – 500 keV
- Ion spectra (total ions): Three views/head
 45 – 500 keV

EPD:
- EIS
- FEEPS

FIELDS:
- 3D E-fields: DC to 100 kHz
- 3D B-fields
 - FGM: DC to 64 Hz
 - SCM: 1 Hz to 6 kHz
- EDI for E-field and MAG cal

Torbert et al. [SSR 2014]
Mauk et al. [SSR 2014]
MMS Phase 1x

Opportune period for conjunctions with Van Allen Probes

Phase 1x start: 08 Mar 2016

Phase 1x end: 26 Sep 2016
MMS/Van Allen Probes Superconjunction: 01 May 2016

All 6 spacecraft within $0.4 R_E$ around ~23:00 UT

- Burst data from MMS available
- Wave burst data on RBSP available

Allison Jaynes is leading analysis on this event
MMS/Van Allen Probes Superconjunction: 01 May 2016

Chorus waves: evolution and effects

MMS

• Differences seen between 4 MMS spacecraft

Van Allen Probes

• Chorus falls below 0.1 f_{ce} part of the time
• Slight differences between wave spectra on RBSP A & B
• Nice modulation of chorus

Much to study during this event!
• Modulation of VLF by ULF
• Chorus evolution in space and time
• Particle effects

More results at AGU

Similar to observations in Jaynes et al. [2015] and Chen et al. [2016]
07 April 2016 Conjunction

Event orientation

- Conjunction between RBSP-B and MMS (all 4 s/c) around 01:45UT on 07 April 2016
- Occurred on dawn side around 06:30 LT
- Min. distance between ~1.15 RE
07 April 2016 Conjunction
Magnetic conjunction: ~02:05 UT

- Tsyganenko-Sitnov [2005] model indicates magnetic conjunction (closest in L-shell and MLT) is at ~02:05 UT

- Closest physical approach is much earlier, around ~01:45 UT

- Both RBSP and MMS are at higher latitude

- Note, MMS at higher latitude than RBSP
07 April 2016 Conjunction

MMS Configuration

- MMS separated by 10s of km
- Not an ideal tetrahedron configuration but it will still work well for 3D propagation of physical features (e.g., wave fronts)
Solar Wind Data
OMNI 5-min

- Nothing special…. at all!
 - Bz persistently southward but weak
 - Lower than average speed
 - Density high but pressure normal
 - Density and pressure spike (weak) at 00:50 – 01:30 UT
 - Minor substorm activity from AE and AL between 01:00 and 02:30 UT
 - Non-storm period from SYM-H
07 April 2016

Electron Injections

- RBSP-A: Observed 3 dispersed injection signatures
- RBSP-B: Observed 1 (or 2?) clear dispersed injection signature
- MMS: Observed 3+ dispersed injection signatures; 3rd injection has clear substructure or is really a close series of injections
- RBSP sees no such substructure...
07 April 2016

Electron injections

• LANL-GEO data:

• “Drifting electron holes” → have to do with insufficient source population in plasma sheet

• As Geoff said: “The plot thickens…”

Near-dispersionless (and dispersed or echo?)

At least 1 dispersed

At least 4 dispersed

1 dispersed
MMS Electrons

FEEPS Burst Data

- MMS-FEEPS PADs: in burst mode, we have 0.3 sec resolution!

- Different arrival timing between spacecraft? No... Electrons are drifting (and gyrating) too fast

- Pitch angle dispersion is very clear though
MMS Electrons
FEEPS Burst Data

- Substructure much clearer here: at least 4 injections...

- Upper energy cutoff steps up with each new injection [e.g., Turner et al., GRL 2016]
07 April 2016

Ion injections

- Ion injections observed by Geotail and MMS but not by RBSP!

Electron injections penetrated to lower L-shells than the ion injections!
ULF Waves
Wave activity observed during injections

- ULF wave activity observed by all three s/c
- Waves occur around the same time as the injections are observed
- Periods are different at different spacecraft
- Note scales different on wave plots...
ULF Waves

Analysis

- These are large-scale, toroidal field line resonances!
- The waves were present prior to the injections
- Different frequencies at different s/c is a spatial effect: FLR frequencies decrease with increasing L (longer field lines)

Conclusion: These are ongoing field line resonances (FLR); though interesting, they are likely not directly related to the injections
Chorus Waves

Wave activity observed during injections

- Chorus wave activity lights up when <50 keV electrons from the injection drift past the spacecraft
- Need to look at HOPE data from RB
- NO FPI from MMS... 😞
Chorus Waves

RBSP Analysis

- Definitely some correspondence between ≤ 33 keV electrons and chorus waves
- High resolution PAD data from RBSP-A shown here (binned at 1-deg in PA)
Chorus Waves

MMS Analysis

- Multipoint observations from MMS
Chorus Waves

MMS Analysis

- Need E-field data in GSE (currently just in instrument coordinate frame)

- With that, can start looking at Poynting flux, wave-vectors, and how these waves are propagating and evolving as they do so…
Chorus Waves

MMS Analysis

- Note phase: this is clearly the same wave observed by all four MMS spacecraft.

- Note also difference in amplitudes...