Validating Equatorial Plasmasphere Simulations with the Van Allen Probes

S. De Pascuale1, V. Jordanova2, J. Goldstein3, C. Kletzing1, W. Kurth1, S. Thaller4, and J. Wygant4

1University of Iowa, 2Los Alamos National Laboratory, 3Southwest Research Institute, 4University of Minnesota
Source and Loss of Plasma Density

Convection Potential

Refilling Timescale

\[
E \times B \left| \frac{\partial n_{eq}}{\partial t} \right| \frac{n_{sat} - n_{eq}}{\tau}
\]

Semi-Empirical Approach: Spacecraft database combined with theory

- Volland-Stern & SAPS potential and IRI/MSIS derived ionospheric fluxes
Evolution of Equatorial Plasma Density

Initial Plasmasphere

\[mL + b \mid \log_{10}(n_{sat}) \mid EMFISIS \]

Empirical Approach: fit and compare model to in situ spacecraft data

- Carpenter & Anderson saturated plasmasphere and EMFISIS density
Pre-Midnight Observed Geomagnetic Storm

CASE 1: Inner-magnetosphere parameters

First Week of June 2013: severe erosion of plasmaspheric density

- A long, moderate plateau follows the strong peak in geomagnetic activity
Sunward Surge: formation phase of a plume in response to erosion

- Strengthening of convection narrows plasma duskside-bulge
Validating Equatorial Plasmasphere Simulations with the Van Allen Probes De Pascuale

Extracting Plasmapause Locations

RBSP-A EMFISIS Observations

Plasmapause Highlight

Post-storm Features: variable and asymmetric plasmapause

- Simulation produces less prominent plasmapause than observed
Validating Equatorial Plasmasphere Simulations with the Van Allen Probes
De Pascaule

Coincidence of Extracted Plasmapause Locations

Plasmapause Encounters: overestimated by simulation in moderate activity

- Asymmetric plasmapause appears during post-storm plateau
CASE 2: Solar Wind Parameters

Post-Midnight Observed Geomagnetic Storm

Third Week of January 2013: moderate erosion of plasmaspheric density

- Abrupt increases in geomagnetic activity are OOM above quiet background
Impact of Geomagnetic Storm on Plasmasphere

Corotation Region Expands: plasma carried around Earth after erosion
- Weakening of convection furthers extent of drift paths closed to Earth
Extracting Plasmapause Locations

Pre-storm Features: variable but symmetric plasmapause

- Simulation better captures steepness of observed plasmapause
Validating Equatorial Plasmasphere Simulations with the Van Allen Probes

De Pascale

Coincidence of Extracted Plasmapause Locations

Plasmapause Encounters: closely followed by simulation throughout activity

- RBSP A outlier during active time due to density measurement technique
Comparison of Simulation Fidelity

Pre-Midnight Event

- **Outbound**
- **Inbound**

Post-Midnight Event

- **Outbound**
- **Inbound**

Difference in Plasma Density: simulation versus observations

- Better reproduces plasmaspheric density within plasmapause
Discussion of Results

Impact of Convection Parameterization on Plasmasphere

- **Plasmapause Comparison:** solar wind driven versus Kp driven simulation
- Solar wind trial produces more distinct erosion and recovery than Kp trial
Validating Equatorial Plasmasphere Simulations with the Van Allen Probes De Pascuale

Including the Sub-Auroral Polarization Stream

Duskward Electric Field: observed by EFW and produced by convection
- Strong enhancements coincident with severe plasmasphere erosion

Following Thaller et al. 2015
Validating Equatorial Plasmasphere Simulations with the Van Allen Probes

De Pascucale

Impact of Convection Parameterization on Plasmasphere

Plasmapause Comparison: solar wind driven versus Kp driven simulation

- Kp trial exerts stronger convection on plasmasphere than solar wind trial
Validating Equatorial Plasmasphere Simulations with the Van Allen Probes

De Pascaule

Modifying the Viscous Solar Wind Interaction

Activity Threshold: stronger versus weaker background level

- Quiet time activity level dictates full extent of plasmapause during recovery
First Week of June 2013: case better simulated by stronger activity with the Kp-index

\[\Delta L_{AVG} = 0.39 \pm 0.05 \]

Third Week of January 2013: case better simulated by weaker activity with the solar wind parameterization

\[\Delta L_{AVG} = 0.42 \pm 0.06 \]

RAM-CPL Plasmasphere: provides evolution of equatorial electron density

Future work will apply self-consistent electric and magnetic fields with RAM